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Abstract: In this study, we present an advanced object detection system designed specifically for remote sensing images, 

leveraging the YOLOv11 framework enhanced with a Convolutional Block Attention Module (CBAM). Detecting objects in 

remote sensing imagery poses significant challenges due to the wide variation in object scales, complex backgrounds, densely 

packed objects, and arbitrary orientations. Traditional detection models often struggle under these conditions, particularly in 

accurately identifying small objects. To address these limitations, we propose two key improvements to YOLOv11: (1) the 

integration of CBAM, which enhances feature extraction by focusing on critical regions through channel and spatial attention 

mechanisms, thereby suppressing irrelevant background information, and (2) the modification of the detection head by 

introducing an additional layer specifically optimized for small object detection, improving the model's ability to handle multi-

scale objects. We evaluated our proposed model on the DOTA dataset, a widely recognized benchmark for aerial image object 

detection. Experimental results demonstrate a significant improvement in performance, achieving a mean Average Precision 

(mAP50) of 76.68%, which outperforms both the baseline YOLOv11 and several state-of-the-art models. Furthermore, ablation 

studies confirm the individual contributions of CBAM and the enhanced detection head to the overall performance. These 

findings highlight the effectiveness of combining attention mechanisms with multi-scale feature learning to advance object 

detection in remote sensing applications, offering a robust solution for real-world scenarios such as urban planning, 

environmental monitoring, and disaster management. 
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Introduction 
     Computer vision has emerged as a transformative technology across diverse domains, revolutionizing how we analyze and 

interpret visual data. In medicine, it plays a pivotal role in identifying diseases such as cardiovascular conditions [1], various 

cancers [2], and other ailments by analyzing medical imaging with unprecedented accuracy. In psychology, it aids in emotion 

recognition by decoding facial expressions [3], offering insights into human behavior and mental states. Firefighters benefit from 

computer vision through advanced fire detection systems [4] that pinpoint flames in complex environments, enhancing response 

times and safety. Beyond these, its applications extend to aerial imagery analysis, enabling tasks such as environmental 

monitoring, disaster response, and urban planning. This widespread adoption underscores the versatility of computer vision, 

making it a cornerstone of modern technological advancements. In this context, the detection of objects in remote sensing has 

become a fundamental aspect of geospatial analysis, with significant implications for civilians, leveraging the power of computer 

vision to address real-world challenges.Accurate identification and localization of objects in satellite images are essential for 

various applications, including disaster relief, environmental surveillance, city planning, and strategic defense operations [5]-

[11]. Detecting objects in remote sensing is trickier than in regular object detection because of how satellite and aerial images 

work. Problems like objects varying in size, appearing at odd angles, being packed closely together, and having messy 

backgrounds make it harder to spot them accurately [12], [13]. The DOTAv1 [14] dataset, a widely recognized benchmark in 

remote sensing object detection, addresses these challenges. It features a diverse collection of objects, including vehicles, ships, 

and aircraft, which are often arranged in dense clusters and exhibit varying orientations. In addition, the dataset includes images 

with complex backgrounds, such as urban landscapes, forests, and water bodies, which introduce significant noise and 

interference. These factors make DOTAv1 an ideal testbed for evaluating the robustness and adaptability of object detection 

algorithms in real-world scenarios. One of the most pressing challenges in remote sensing object detection is the arbitrary 

orientation of objects. Unlike natural images, in which objects typically appear in upright positions, objects in satellite imagery 

can appear at any angle. This necessitates the development of models capable of handling rotational invariance, a feature that is 

not inherently present in many traditional object detection frameworks. Furthermore, the dense arrangement of objects in remote 

sensing images often leads to occlusion and overlapping, making it difficult for models to accurately localize and classify 

individual instances. Another critical challenge is the variation in object scale. Remote sensing images often contain objects that 

vary significantly in size, ranging from small vehicles to large ships or aircraft. This multi-scale nature requires models to 

simultaneously detect objects at different resolutions, which is particularly challenging in low-resolution imaging. The presence 

of complex backgrounds, such as textured terrains or cluttered urban environments, can introduce significant noise, further 

degrading detection performance.Deep learning-based approaches have revolutionized object detection, achieving state-of-the-

art performance on natural image datasets such as COCO [15] and ImageNet [16]. Among these, You Only Look Once (YOLO) 

[17] has gained popularity owing to its real-time detection and high accuracy. However, its performance degrades in remote 

sensing imagery owing to challenges such as arbitrary orientations, dense object distributions, and complex backgrounds. To 

address these limitations, attention mechanisms, particularly the Convolutional Block Attention Module (CBAM) [18], have 

been introduced to enhance feature representation by sequentially applying channel and spatial attention. Integrating CBAM into 

object detection frameworks improves accuracy and robustness by enabling models to focus on salient features while suppressing 

background noise. In this study, we propose a modified version of the YOLO 11 [19] architecture, enhanced with CBAM, to 

address the unique challenges of remote sensing object detection. Our approach leverages the strengths of YOLO 11, such as its 

real-time detection capabilities and efficient architecture, while integrating CBAM to improve feature representation and handle 

complex backgrounds. We evaluate our model on the DOTAv1 dataset, focusing on its ability to detect objects with arbitrary 

orientations, dense arrangements, and varying scales. The experimental results demonstrate that our modified model achieves 

significant improvements in detection accuracy, particularly in challenging scenarios where traditional models often fail. This 

study makes the following contributions: 

1. We improve the YOLO 11 architecture by integrating CBAM, enhancing the model's ability to handle complex 

backgrounds and refining feature representation. 

2. Evaluation on DOTAv1: We conduct extensive experiments on the DOTAv1 dataset, demonstrating the effectiveness 

of our approach in detecting objects with arbitrary orientations and dense arrangements. 

3. Performance Analysis: We provide a detailed analysis of our model's performance, including comparisons with the 

original YOLO 11 and other state-of-the-art models, highlighting the improvements achieved by our modifications. 

By addressing the unique challenges of remote sensing object detection, our work aims to advance the state of the art in this field 
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and contribute to the development of more robust and accurate detection algorithms for real-world applications. 

2- Related Work 
     In the following two sections, advancements in object detection algorithms are reviewed, covering both traditional techniques 

and deep learning-based methods.  In the last 20 years, object detection has improved a lot, focusing mainly on recognizing 

objects in images or videos and figuring out exactly where they are and how big they are. Unlike image classification, which 

focuses solely on labeling objects, object detection involves both classification and accurate localization. The development of 

object detection can be divided into two major phases: the period dominated by traditional algorithms (1998–2014) and the era 

of deep learning-driven approaches (2014 to the present). 

2-1-Traditional object detection algorithms 

    Before 2012, object detection methods primarily relied on handcrafted feature extraction due to the absence of advanced 

image representation techniques. These methods generally involved identifying object regions, extracting features, and 

classifying objects. Key approaches from this era include Scale-Invariant Feature Transform(SIFT) [20], Histogram of Oriented 

Gradients (HOG) [21], Speeded Up Robust Features (SURF) [22], and Oriented FAST and Rotated BRIEF (ORB) [23]. 

Although these algorithms laid the foundation for object detection, their reliance on handcrafted features and high computational 

demands limited their performance in complex scenarios, leading to the emergence of deep learning-based approaches. 

2-2-Deep Learning based object detection algorithms 

    With the advent of deep learning in the period of deep learning-based object detection algorithms (2014–present) [24]-[27]  

significant breakthroughs emerged. The adoption of deep learning techniques significantly improved feature extraction and 

representation, enhancing the ability to tackle complex detection challenges. Consequently, traditional object detection 

algorithms were progressively replaced by deep learning-based approaches. Within this paradigm, two main methodologies 

emerged: anchor-based techniques, encompassing both one-stage and two-stage models, and anchor-free approaches. In anchor-

based object detection, commonly used two-stage algorithms such as R-CNN [28], Fast RCNN [29], Faster RCNN [30], FPN 

[31] and Mask RCNN [32] are applied. Object detection algorithms typically follow a two-stage approach: region proposal 

generation and object detection. In the first stage, the algorithm identifies potential object-containing regions or bounding boxes 

within the input image. This is often achieved using a Region Proposal Network (RPN), which efficiently highlights regions of 

interest for further evaluation. In the second stage, the candidate regions undergo object detection, where each region is classified 

to determine whether it contains an object, and its position and boundaries are refined accordingly. This phase typically employs 

convolutional neural networks (CNNs) combined with classification and regression components to improve detection precision. 

Single-stage object detection techniques streamline the conventional two-stage approach by removing the need for a separate 

region proposal step. 

These algorithms directly predict the class probabilities and object position coordinates, enabling faster detection speeds. Notable 

examples of one-stage detection algorithms are YOLOv1–11 [33], SSD [34], the development of these algorithms shows how 

object detection keeps getting better, becoming more efficient and useful over time. 

Anchor-free object detection algorithms eliminate the dependency on predefined anchors, a key characteristic of traditional 

anchor-based methods. By doing so, they reduce computational complexity and minimize the number of hyperparameters, 

leading to improved model efficiency. Recently, anchor-free approaches have focused on detecting key points for object 

localization instead of relying on anchors, streamlining model architecture and further decreasing computational overhead. 

Noteworthy anchor-free object detection algorithms include CornerNet [35], CenterNet [36], and FSAF [37]. 

2-3-Dataset Description 

    To train and evaluate our enhanced model, we utilized the DOTA dataset, a comprehensive collection of aerial images 

designed for object detection tasks. The dataset was initially released by Wuhan University in 2017 and consists of three versions: 

DOTAv1.0, DOTAv1.5 and DOTAv2.0. For this study, we employed the DOTAv1.0 version, which comprises 2,806 aerial 

images with resolutions ranging from 800 × 800 pixels to 4000 × 4000 pixels. These images include 188,282 annotations across 

15 distinct categories of remote sensing targets. The DOTA images are sourced from multiple platforms, including Google Earth, 

GF-2 and JL-1 satellites (provided by the China Centre for Resources Satellite Data and Application), and aerial images from 

CycloMedia B.V. The dataset contains both RGB images and grayscale images. The RGB images are obtained from Google 

Earth and CycloMedia, while the grayscale images are derived from the panchromatic band of the GF-2 and JL-1 satellite images. 

Compared to other publicly available remote sensing datasets, DOTAv1.0 stands out due to its extensive collection of images 

featuring small and multi-scale targets, as well as its sufficient sample size for each category. These characteristics make it an 

ideal choice for training our network, enabling the model to achieve robust performance in detecting a wide variety of objects 

in aerial imagery. These categories, such as baseball diamond, storage tank, tennis court, basketball court, ground track field, 
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harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field, and swimming pool, are illustrated in figure 

1.Figure 2 illustrates sample aerial images from the DOTA v1.0 dataset, showcasing different environments such as 

transportation hubs, urban areas, and sports facilities. The images demonstrate the multi-scale nature of the dataset, where objects 

appear in various orientations, lighting conditions, and occlusions, making object detection more challenging. The diversity of 

these objects, along with variations in scale, orientation, and background complexity, makes the DOTAv1.0 dataset an ideal 

choice for training and evaluating robust object detection models. 

 
Fig. 1. Distribution of object categories in the DOTA v1.0 dataset, illustrating the imbalance in class frequencies and highlighting the 

challenge of detecting underrepresented categories. 

 
 
Fig. 2.Examples of DOTA aerial images showcasing diverse object categories, varying scales, arbitrary orientations, and complex 

backgrounds, emphasizing the need for robust object detection models. 
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3-Methods 

3-1-Proposed YOLO 11 Architecture with Modifications 

   The YOLO framework has significantly influenced the field of object detection by introducing an end-to-end neural network 

architecture capable of simultaneously performing object localization and classification. The original YOLO models utilize a 

unified approach, enabling efficient inference while maintaining high detection accuracy for real-time applications [15]. Building 

upon this foundation, YOLO 11 integrates novel enhancements over its predecessors, particularly focusing on improving small 

object detection and addressing challenges in complex environments, such as aerial imagery datasets. The modifications 

introduced in the proposed model are designed to enhance feature extraction, improve attention mechanisms, and optimize 

detection across multiple scales. The following sections detail the architecture and key changes. 

3-2-Backbone 

   The backbone in YOLO 11 is responsible for feature extraction from input images, generating multi-scale feature maps through 

a series of convolutional layers and residual blocks. As shown in Figure 5, the architecture incorporates an enhanced feature 

extraction pipeline to improve performance in challenging environments. A CBAM layer is integrated after the second C3k2 

block. The CBAM mechanism sequentially applies channel and spatial attention, refining feature maps to focus on relevant 

regions while suppressing background noise. The CBAM module enhances the model’s ability to prioritize meaningful spatial 

information, which is particularly crucial for aerial imagery datasets, where small objects often appear in cluttered backgrounds. 

The integration of CBAM after the C3k2 block ensures that early-stage feature representations are effectively filtered before 

deeper layers process them. Unlike traditional feature extraction methods, which treat all spatial regions equally, CBAM 

dynamically enhances the most informative features, leading to improved localization and classification accuracy [16]. 

Additionally, the proposed backbone increases the number of channels in early convolutional layers to capture fine-grained 

details more effectively. This modification helps compensate for the high object density and small object scales present in aerial 

imagery datasets like DOTA. 

3-3-Neck 

    The neck aggregates and fuses multi-scale features from the backbone before passing them to the detection head. In the 

proposed architecture, a key improvement is the introduction of an enhanced neck structure (highlighted in orange in Figure 4) 

that incorporates an additional detection layer specifically designed for super small objects. This modification includes an extra 

convolutional pathway, refining feature representations before feature fusion. Unlike the previous YOLO architectures, which 

rely solely on Feature Pyramid Networks (FPN) or Path Aggregation Networks (PANet), the improved design in figure 4 

introduces an additional feature extraction step before concatenation. This ensures that fine-grained details from high-resolution 

feature maps are preserved, which is particularly beneficial for detecting objects with minimal pixel coverage. Another 

improvement in the neck design is the inclusion of adaptive feature fusion, which adjusts feature importance dynamically based 

on object scale. Traditional multi-scale aggregation methods, such as FPN, use a fixed hierarchy of feature maps, which may 

not be optimal for aerial images. By refining feature interactions through a dynamic weighting strategy, the proposed model 

achieves better alignment of feature representations across different object scales. 

3-4-Head 

    The detection component is tasked with producing bounding box coordinates and class likelihoods for every identified object. 

A notable improvement comes from incorporating multi-scale detection with a CBAM adjustment, allowing the model to 

generate predictions across four different feature scales. This enhancement greatly boosts the model's capacity to identify objects 

of diverse sizes, particularly emphasizing the detection of extremely small ones. 

3-5-Performance and Efficiency 

    The proposed modifications, including CBAM and the additional detection layer, enhance detection accuracy without 

significantly increasing computational complexity. Early experiments indicate improved mAP scores, particularly for small 

objects, while maintaining resource efficiency. Compared to the original YOLO 11 architecture, which lacked specific attention 

mechanisms and super-small object detection capabilities, these enhancements address these limitations and make the model 

more robust for datasets like DOTA. Figure 5 illustrates the key components of the modified YOLO 11 architecture, highlighting 

the integration of CBAM and the additional detection layer that improves feature refinement and small object localization. 

 



222  

 
Fig. 3. OLO 11 original architecture 

 
Fig. 4.Improvement YOLO 11 

4-Experiments and Results 
    The training process was conducted using the DOTA-v1.0 dataset, which contains 15 common categories, 2,806 images, and 

188,282 instances. The dataset was split into training, validation, and test sets with proportions of 1/2, 1/6, and 1/3, respectively. 

This split ensures a balanced distribution of data for training, validation, and evaluation. The model was trained using the 

AdamW optimizer with an initial learning rate of  0.001. The training process included 100 epochs with a batch size of 16 and 

an image size of 640 × 640 pixels. To improve convergence, warmup epochs were applied for the first 10 epochs. Additionally, 

the close\_mosaic parameter was set to 10, disabling mosaic augmentation in the final 10 epochs to stabilize training. To prevent 

overfitting, data augmentation techniques were enabled, including mosaic augmentation (before the final 10 epochs), random 

cropping, and flipping. The model was trained on an NVIDIA A100 GPU, leveraging its high computational power to accelerate 

the training process. The training process was configured to save checkpoints every 10 epochs  and store the final model weights 

for evaluation. 

4-1-Baseline Comparisons 

    The new YOLO 11 model outperformed both the original YOLO 11 and YOLOv8, especially when it came to spotting tiny 

objects in aerial photos. As shown in Table 1, our YOLO 11 model achieved a mean Average Precision (mAP50) of 76.68\%, 

surpassing the original YOLO 11 by 1.22\% and YOLOv8 by 2.48\%. Additionally, the mAP50-95 score improved to 60.35\%, 

indicating better precision across different IoU thresholds. The recall also increased to 73.12\%, reflecting a higher capability of 

detecting objects correctly. These results highlight the effectiveness of our modifications, including the integration of CBAM 

and the additional detection layer, in improving detection performance without significantly increasing computational 

complexity. 



223  

Table 1: comparing the proposed model against YOLOv11, YOLOv8 on the DOTA dataset 

Model mAP50 mAP50-95 Recall 

Yolo 11 75.45 59.43 70.75 

Yolo 8 74.19 58.58 68.98 

Our model 76.68 60.35 73.12 

 

This study evaluates the performance of YOLO 11, YOLOv8, and OURYOLO on the DOTA v1.0 dataset, focusing on three 

key metrics: mAP50, mAP95, and Recall. figures 5, 6, and 7 illustrate the comparative performance of these models over the 

training epochs. Figure 5 presents the mAP50 metric, which measures detection accuracy at an IoU threshold of 0.50. The results 

indicate that all models exhibit an increasing trend in precision over the training process, with significant improvements 

occurring within the first 40–50 epochs. Notably, OURYOLO outperforms both YOLO 11 and YOLOv8, particularly in the 

later stages of training, demonstrating superior object detection capability at this threshold. Figure 6 depicts mAP95, a stricter 

evaluation metric that averages precision across multiple IoU thresholds ranging from 0.50 to 0.95. While all models follow a 

similar learning trajectory, the absolute values are lower compared to mAP50 due to the increased IoU constraints. The results 

indicate that OURYOLO consistently achieves a higher mAP95, highlighting its effectiveness in detecting small objects with 

greater localization accuracy. This performance advantage suggests that architectural enhancements in OURYOLO contribute 

to improved feature extraction and object representation. Figure 7 illustrates the recall metric, which reflects the proportion of 

ground-truth objects correctly detected by the models. The recall curves indicate that OURYOLO maintains higher recall values 

in the middle stages of training and stabilizes at a competitive level in the final epochs. In contrast, YOLO 11 experiences a 

slight decline in recall towards the end of training, suggesting potential overfitting or reduced generalization. 

 
Fig. 5. Comparison of mAP50 scores across different models, demonstrating the performance improvements achieved by the proposed 

YOLO11-CBAM architecture. 

Overall, the results confirm that OURYOLO achieves the best performance across all three metrics, surpassing YOLO 11 and 

YOLOv8 in terms of precision and recall. The improvements are particularly notable in mAP95, which underscores the model’s 

ability to detect small objects in aerial images with high localization accuracy. Furthermore, the training curves indicate that all 

models converge after approximately 40–50 epochs, suggesting that further training beyond this point yields minimal gains. 

These findings demonstrate that OURYOLO is a highly effective model for small object detection in aerial imagery, making it 

a strong candidate for real-world applications requiring precise localization. Future improvements may focus on optimizing the 

model architecture to further enhance recall while maintaining high precision. 

 
Fig. 6.Comparison of mAP50-95 scores, illustrating the precision of different object detection methods, particularly in detecting small objects 

in aerial imagery 

Figure 8 illustrates the objects detected by the YOLO11 algorithm on the DOTA dataset. Figure 9 showcases the results of our 

proposed algorithm on the same images, where the detected objects are clearly marked. Additionally, the differences between 
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figures 8 and 9  are also highlighted. To comprehensively evaluate the model's performance, Precision-Recall (P–R) curves were 

plotted for each category, as illustrated in figure 10. The area under these curves, referred to as Average Precision (AP), was 

calculated, with higher AP values indicating superior detection performance. Furthermore, two critical parameters in evaluating 

deep learning models are the Intersection-over-Union (IoU) threshold and the confidence threshold. 

 
Fig. 7.Comparison of recall values, highlighting the detection sensitivity of various models, particularly in challenging aerial scenarios. 

 
Fig. 8. Detected object by YOLO11. 

 
Fig. 9. Detected object by our YOLO11. 

To comprehensively evaluate the model's performance, Precision-Recall (P–R) curves were plotted for each category, as 

illustrated in figure 10. The area under these curves, referred to as Average Precision (AP), was calculated, with higher AP 

values indicating superior detection performance. Furthermore, two critical parameters in evaluating deep learning models are 

the Intersection-over-Union (IoU) threshold and the confidence threshold. 
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Fig. 10. Percision-Recall curve. 

5-Ablation Experiments 
    To analyze the impact of our modifications, we conducted ablation experiments to evaluate the contribution of each 

component. Initially, integrating CBAM into YOLO 11 resulted in an improvement in mAP50 from 75.45\% to 75.93\%, 

showcasing the module’s effectiveness in enhancing feature extraction. Building on this, we introduced an additional detection 

layer tailored for small object detection, further boosting mAP50 to 76.68\%. This progression highlights the synergistic effect 

of CBAM and the newly added module in refining detection performance. The results validate our approach in addressing small 

object challenges in aerial imagery, confirming that attention mechanisms and specialized detection layers can significantly 

enhance object detection capabilities. 

Table 2: PERFORMANCE COMPARISON OF YOLOV11 VARIANTS, SHOWING THE IMPACT OF CBAM AND OUR PROPOSED 

MODIFICATIONS ON MAP AND RECALL. 

Model mAP50 mAP50-95 Recall 

Yolo 11 75.45 59.43 70.75 

Yolo11+CBAM 75.93 59.72 71.32 

Our model 76.68 60.35 73.12 

6- Conclusion 
    In this study, we presented an improved YOLO 11 architecture incorporating CBAM and additional detection layers to 

enhance small object detection in remote sensing images. Our modifications led to a significant increase in detection accuracy, 

achieving an mAP50 score of 76.68\% on the DOTA dataset, outperforming the baseline YOLO 11 model. By integrating 

CBAM, we improved feature selection by emphasizing important regions while reducing background noise. Furthermore, the 

additional detection layer allowed for better localization of small-scale objects, addressing a critical challenge in aerial imagery 

analysis. These enhancements demonstrate the potential of incorporating attention mechanisms and multi-scale detection 

strategies for robust object detection in complex environments. Future work will explore further optimization techniques to 

enhance model efficiency and accuracy while reducing computational costs. 
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