
375 
 

 

DOI: 10.5281/zenodo.17142187 

A moment-based Optimization Model for Designing the Supply Chain 

of Dairy Products: Data-driven and Sustainable Approach 

a Mahyar Abbasian, b*Amin Jamili 

aSchool of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran, e-mail: 

abbasian.mahyar@ut.ac.ir 

bSchool of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran, e-mail: 

a_jamili@ut.ac.ir 

*Corresponding author: a_jamili@ut.ac.ir 
 

 Published:  18 September 2025 

Accepted:   22 August 2025  

Received:   11 July 2025 

 

Abstract: This study presents a moment-based optimization model for designing a sustainable, data-driven 

supply chain for perishable dairy products. The proposed multi-objective model integrates economic, 

environmental, and social dimensions of sustainability and addresses the inherent uncertainty in demand through 

a machine learning forecasting approach. The supply chain network includes producers, distributors, and retailers, 

with the aim of minimizing total costs and carbon emissions while maximizing job creation. A novel moment-

based reformulation is introduced to enhance computational tractability, allowing the model to be efficiently 

solved using state-of-the-art optimizers such as Gurobi. Additionally, a CNN-based algorithm is employed for 

route optimization and fitness evaluation, improving decision-making under dynamic and uncertain conditions. 

The model's performance is validated using a real-world case study from the dairy industry, demonstrating its 

effectiveness in achieving sustainable supply chain objectives under varying demand scenarios and operational 

constraints. Comparative analyses with metaheuristic methods like NSGA-II further highlight the robustness and 

efficiency of the proposed approach.  

Keywords: Sustainable supply chain, Perishable dairy products, Demand prediction, multi-objective 

optimization, CNN-based routing. 
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1. Introduction  

Supply chain management involves approaches used to effectively integrate suppliers, 

warehouses, and stores to produce the appropriate amount of goods, distribute them in the right 

quantity, at the right time, and place, while minimizing costs (Carcano et al. 2005; Wang 2025). 

Supply chain management focuses on strategic, tactical, and operational activities. Strategic 

activities include long-term planning and issues like designing and configuring a multi-level 

supply chain. Tactical activities focus on short-term and long-term supply policies and material 

flow, while operational activities, in the short term, determine transportation capacity and 

optimize daily allocation of customer demand to retailers, distribution centers, or production 

locations (Hosseinitabar et al. 2024; Laínez et al. 2008). Coordination of supply, production, 

and distribution in the supply chain includes the integration of all processes related to the 

supply of goods, production, and distribution of products to minimize costs and increase the 

overall efficiency of the supply chain (Hosseinitabar et al. 2024; Jain et al. 2025). Various 

parameters in the supply chain can affect the system’s costs, such as the type of product, 

inventory policies, demand type, the structure of the supply chain, and others. Considering the 

high costs of inventory management and the crucial importance of inventory control systems 

in the supply chain, inventory management is regarded as one of the most critical issues in 

trade and industry. This importance becomes even more significant in the case of perishable 

goods due to their specific conditions (Mirabelli et al. 2022; Rafiei et al. 2018). 

In general, a perishable good is defined as a product that loses its value over time, such as dairy 

products, fruits, vegetables, medicines, blood, etc. In today’s competitive market, providing 

appropriate solutions for better management of perishable goods' demand seems essential. 

Spoilage of goods, in addition to causing economic loss for businesses, leads to customer 

dissatisfaction and increases environmental waste and pollution (Mustafa et al. 2024; Yavuz et 

al. 2024). Many perishable goods lose their quality or are completely wasted due to inefficient 

transportation processes. Through better planning and control of transportation activities, it is 

possible to reduce the spoilage and loss of freshness of goods (Liu et al. 2021; Li et al. 2025). 

Moreover, by coordinating, providing accurate information, and continuously monitoring 

perishable products, the transportation schedule can be quickly updated before or during 

transportation to preserve the freshness and quality of products and prevent their loss, resulting 

in more transparent and efficient supply chains (Biuki et al. 2020; Lejarza et al. 2020). In 

today’s competitive market, finding suitable solutions for better management of perishable 

goods' demand is essential. Spoilage of goods not only causes economic losses for businesses 

but also results in customer dissatisfaction and environmental waste and pollution. Therefore, 

considering sustainability in the design of supply chains for perishable products is of great 

importance. The sustainability approach consists of three aspects: economic, environmental, 

and social (Liu et al. 2021; Yavari et al. 2019). Many perishable goods lose their quality or are 

entirely wasted due to inefficient transportation processes. Through better planning and control 

of transportation activities, the spoilage and freshness loss of goods can be reduced. 

Additionally, by coordinating, providing accurate information, and continuously monitoring 

perishable products, the transportation schedule can be quickly updated before or during the 
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transportation to preserve the freshness and quality of products and prevent their loss. This 

results in more transparent and efficient supply chains (Mejjaouli et al. 2018; Can Atasagun et 

al. 2024). On the other hand, one of the significant problems in designing supply chains is 

estimating supply chain demand. The uncertainty in demand affects inventory management, 

order planning, and production quantities, causing various challenges in the supply chain. 

Demand prediction plays a critical and vital role in supply chain management. A good demand 

forecast can neutralize the bullwhip effect, reduce losses, and increase profits. One of the 

methods for demand prediction is to use a data-driven approach and machine learning 

algorithms (Mediavilla et al. 2022; Rahman Mahin et al. 2025). Based on what has been 

discussed, the aim of this research is to present a data-driven hybrid model for modeling a 

sustainable supply chain for perishable dairy products. In other words, this research presents a 

multi-objective model to minimize the supply chain costs for perishable products and minimize 

the delivery time based on the product’s shelf life. The proposed supply chain includes a 

producer, distributor, and retailer, where the products produced by the producer are transferred 

to the distributor and finally sold by the retailer. The objective functions considered in this 

model include minimizing supply chain costs. The second objective is to minimize the cost of 

carbon dioxide emissions as an environmental sustainability factor, and the third objective is 

to maximize the number of jobs created in the supply chain. Given the uncertainty in supply 

chain demand, the proposed model uses machine learning to predict demand. The structure of 

this research is as follows: Section 2 reviews previous studies on the supply chain of perishable 

products and demand forecasting approaches. In Section 3, the proposed mathematical model 

is presented, including the problem description, assumptions, the proposed mathematical 

model, and research methodology. Section 4 discusses the demand prediction approach and 

related machine learning algorithms. Section 5 presents the results of the hybrid model and 

analyzes the model’s performance using a numerical example. Finally, Section 6 presents the 

conclusions of the research.  

 

 

2. Literature Review 

  Designing an efficient and sustainable supply chain for perishable goods, particularly dairy 

products, is a critical challenge for both industry and academia. The inherent perishability of 

these products introduces immense complexity, requiring integrated planning that synchronizes 

supply, production, and distribution activities to minimize spoilage and cost while maximizing 

freshness and customer satisfaction. Furthermore, rising consumer demand, stringent quality 

standards, and increasing pressure for sustainable operations necessitate models that go beyond 

traditional cost minimization to include environmental and social objectives. This review 

synthesizes existing literature on integrated supply chain models, highlighting key 

advancements in handling perishability, uncertainty, and multi-objective optimization, thereby 

establishing the foundation and necessity for the proposed data-driven, sustainable model for 

the dairy industry. The foundation of supply chain design literature is built upon integrated 

mathematical models that seek to synchronize various echelons and functions. Early work by 
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researchers like Kazemi et al. (2018) and Rabbani et al. (2016) established multi-objective 

frameworks for multi-level networks, aiming primarily to minimize total costs—encompassing 

transportation, inventory, production, and shortages—while improving service levels. A 

common thread among these studies, including Wang (2021) and Cheng et al. (2019), is the 

acknowledged computational complexity of such integrated models. This complexity 

invariably necessitates the employment of advanced metaheuristic algorithms, such as Non-

dominated Sorting Genetic Algorithm (NSGA-II) and Particle Swarm Optimization (PSO), to 

find near-optimal solutions within a feasible timeframe. These foundational models 

successfully highlight the trade-offs and interdependencies within a supply chain but often lack 

specific mechanisms to address the critical issue of product perishability, which is a defining 

characteristic of the dairy industry and a major source of cost and waste. A significant and 

highly relevant evolution in the literature addresses the unique challenges posed by perishable 

products and uncertainty. Studies by Ahmadi et al. (2019) and Chan et al. (2020) explicitly 

incorporate product perishability into their models, expanding the objective function to include 

maximizing product quality upon delivery and minimizing spoilage costs. This focus is crucial, 

as evidenced by Ali et al. (2021), who identified inadequate cold storage infrastructure as a 

primary cause of customer dissatisfaction in India's dairy industry. Concurrently, to cope with 

the inherent uncertainties in demand and supply, researchers like Alavidoost et al. (2021) 

adopted fuzzy optimization approaches, while others like Liu et al. (2021) integrated 

environmental concerns by adding objectives to minimize carbon emissions. This body of work 

demonstrates a clear shift from purely economic models towards more holistic frameworks that 

balance cost, quality, and sustainability, which are all essential considerations for a modern 

dairy supply chain. 

The most recent research trends focus on enhancing supply chain resilience and leveraging 

data-driven techniques for improved decision-making. Scholars like Abbasian et al. (2023) and 

Foroozesh et al. (2022) are designing robust networks capable of withstanding disruptions 

through strategies like dynamic pricing, multiple sourcing, and robust probabilistic 

programming to handle epistemic uncertainties. Parallel to this, the adoption of Machine 

Learning (ML) is emerging as a powerful tool to reduce uncertainty at its source. Feizabadi 

(2022) and Rekabi et al. (2023) demonstrate that ML methods, including neural networks and 

quadratic regression, significantly outperform traditional forecasting methods, thereby 

mitigating shortage risks and improving overall supply chain performance. These cutting-edge 

approaches in resilience and data-driven analytics provide a strong rationale for developing a 

novel moment-based optimization model that can effectively tackle the specific challenges of 

the dairy sector.Recent research highlights the pivotal role of data-driven methodologies in 

optimizing sustainable supply chain design across various industries. In the realm of perishable 

goods, Arabyesbani et al. (2024) and Flores-Siguenza et al. (2025) employ robust optimization 

and fuzzy optimization integrated with Life Cycle Assessment, respectively, to design cold 

chains that mitigate uncertainty and environmental impact, with applications in livestock and 

the dairy industry. Extending this to strategic advantage, Kumar et al. (2024) argue from a 

Resource-Based View that big data analytics enhance a supply chain's innovative capability, 

which is a critical source of sustainable competitive advantage, particularly in the food sector. 

The focus on coordination and multi-objective modeling is evident in the work of Belghand et 
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al. (2025), who develop a novel buy-back contract for a symbiotic supply chain using a fuzzy 

and data-driven approach, while Yao et al. (2025) use data-driven marketing to compare 

government subsidy strategies for optimal decision-making in a green duopoly. 

Finally, Jafarian et al. (2025) demonstrate the integration of these themes, designing a multi-

echelon pharmaceutical supply chain that simultaneously addresses sustainability, resilience, 

and digitalization through a multi-stage machine learning model. Collectively, these studies 

underscore a paradigm shift towards leveraging data analytics, artificial intelligence, and fuzzy 

systems to solve complex, multi-objective problems in modern supply chains. 

Paper Perishability 

Objective Function Demand Prediction Sustainability 
Case 

Study 
Single 

Objective 

Multi 

Objective 

Time 

Series 

Machine 

Learning 
Economical Environmental Social 

Kazemi et al. (2018)          

Alavidoost et al. (2021)          

Rabbani et al. (2016)          

Wang (2021)          

Cheng et al. (2019)          

Ahmadi et al. (2019)          

Chan et al. (2020)          

Liu et al. (2021)          

Ali et al. (2021)          

Feizabadi (2022)          

Rekabi et al. (2023)          

Abbasian et al. (2023)          

Foroozesh et al. (2022)          

Jaigirdar et al. (2023)          

Arabyesbani et al. (2024)           

Kumar et al. (2024)          

Flores-Siguenza et al. (2025)          

Belghand et al. (2025)          

Jafarian et al. (2025)          

Yao et al. (2025)          

This Paper          

 

Based on the conducted studies, this paper introduces a novel moment-based optimization 

model for designing a sustainable, data-driven supply chain for perishable dairy products. The 

key innovation lies in its hybrid approach that integrates machine learning for demand 

forecasting with a multi-objective mathematical model addressing economic, environmental, 

and social dimensions of sustainability. Unlike traditional models that rely on binary variables 

for facility location and allocation, the proposed framework uses a moment-based 

reformulation to transform the problem into a more tractable form solvable by state-of-the-art 

optimizers like Gurobi. This reformulation replaces binary constraints with moment-based 
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bounds, leading to a second-order conic program that improves computational efficiency while 

maintaining solution quality. Additionally, the model incorporates dynamic pricing, traffic-

aware routing, and shelf-life constraints to reduce waste and emissions, and leverages a CNN-

based algorithm for route optimization. The result is a comprehensive, scalable, and 

computationally efficient framework that enhances both the sustainability and resilience of 

dairy supply chains under uncertainty. The research methodology of present study is as figure 

1. 

 
Figure 1. Research Methodology  

 

 

 

3. Proposed Model 

  This study focuses on the supply chain of perishable food items under a resilience strategy 

aimed at reducing disruptions in traffic conditions related to time windows, considering the 

shelf life of perishable products. This includes dynamic pricing and transportation policies to 

1. Formulating a multi-objective mathematical model 
that simultaneously minimizes costs and emissions 
while maximizing job creation.

2. Incorporating real-world constraints like product 
perishability, dynamic pricing, and traffic conditions.

Integrated Model Development

1. Using Machine Learning algorithms to predict 
uncertain customer demand.

2. Integrating these predictions directly into the 
optimization model to make it data-driven and 
responsive

Data-Driven Demand Forecasting

1. Use of a CNN-based algorithm for route 
optimization and fitness evaluation.

2. Applying a moment-based reformulation to 
transform the model into a more solvable form.

Solving the model using the NSGA-II metaheuristic 
algorithm

Innovative Solution Approach

1. Conducting extensive sensitivity analysis to test the 
model's performance under different parameters and 
scenarios.

2. Evaluating the results to draw conclusions about the 
trade-offs between sustainability objectives and the 
model's practical effectiveness.

Validation & Analysis
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minimize costs as well as environmental impacts. For this purpose, we consider a supply chain 

of perishable food items that includes production centers (PCs), distribution 

centers/warehouses (DCs/W), and retailers. Through this supply network, products are 

transferred from PCs to DCs and from DCs to retailers. There are various routes for 

transportation to retailers, which are susceptible to traffic disruptions. Each route starts from 

candidate DCs and returns to candidate DCs after delivering the product to one or more 

retailers. Different vehicles with varying capacities can be used for transportation. If an order 

is received at the start of period (t), it expires at the beginning of period (t+LFp), where LFp 

denotes the product's shelf life. Therefore, this research will focus on designing a multi-

objective resilient and sustainable supply chain model for perishable dairy products. Initially, 

the proposed model is developed based on resilience and sustainability approaches in three 

aspects: economic, social, and environmental. Additionally, demand forecasting will be 

conducted using a machine learning algorithm. 

Indices: 

Set of available routes N 

Set of retailers R 

Set of products P 

Set of time periods T 

Set of vehicles V 

Set of potential locations D 

Set of PCs (production centers) M 

Parameters: 

Fixed cost of opening PC m in period t 𝐹𝐶𝑚𝑡 

Fixed cost of opening DC d in period t 𝐹𝐶𝑑𝑡 

Fixed cost of allocating DC d to PC m in period t 𝐹𝐶𝑑𝑚𝑡 

Fixed cost of allocating retailer r to DC d in period t 𝐹𝐶𝑛𝑑𝑡 

Transportation cost from PC m to DC d with vehicle v in period t 𝑆𝐶𝑚𝑑𝑣𝑡 

Transportation cost from DC d to retailer r with vehicle v in period t 𝑆𝐶𝑑𝑟𝑣𝑡 

Inventory holding cost at DC d in period t 𝐶𝐻𝐼𝑑𝑡 

Production cost of product p at PC m in period t 𝑃𝐶𝑝𝑚𝑡 

Fuel cost for vehicle v considering traffic conditions in period t 𝐶𝐹𝑣𝑡 

CO2 emission rate due to the opening of PC m in period t 𝑅𝐸𝑚𝑡 

CO2 emission rate due to the opening of DC d in period t 𝑅𝐸𝑑𝑡 

CO2 emission rate due to storing product p in DC d in period t 𝑅𝐸𝑝𝑑𝑡 

CO2 emission rate due to transporting product p from PC m to DC d with vehicle v in period t 𝑅𝐸𝑝𝑚𝑑𝑣𝑡 

CO2 emission rate due to transporting product p from DC d to retailer r with vehicle v in period t 𝑅𝐸𝑝𝑑𝑟𝑣𝑡 

CO2 emission rate for restarting vehicle v at retailer r in period t 𝑅𝐸𝑣𝑟𝑡 
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CO2 emission rate due to producing product p at PC m in period t 𝑅𝐸𝑝𝑚𝑡 

Maximum demand for products p at retailer r in period t 𝑀𝐷𝑝𝑟𝑡 

Maximum allowable speed considering traffic conditions on routes from DC d to retailer r in period t 𝑀𝑆𝑑𝑟𝑣𝑡 

Distance between DC d and retailer r 𝐷𝑠𝑑𝑟 

Capacity of vehicle v 𝐶𝑣 

Capacity of DC d 𝐶𝐷𝑑 

Capacity of PC m 𝐶𝑃𝑚 

Demand elasticity of retailer r for product p in period t 𝑃𝐸𝑟𝑝𝑡 

Late service time for retailer r in period t by vehicle v 𝑆𝑇𝐿𝑟𝑣𝑡 

Early service time for retailer r in period t by vehicle v 𝑆𝑇𝐸𝑟𝑣𝑡 

Last service time for retailer r in period t by vehicle v 𝐿𝑆𝑇𝑟𝑣𝑡 

First service time for retailer r in period t by vehicle v 𝐸𝑆𝑇𝑟𝑣𝑡 

Fuel consumption rate for vehicle v when delivering product from DC d to retailer r under traffic 

conditions in period t 
𝑅𝐶𝐹𝑣𝑑𝑟𝑡 

Large number (used in mathematical models) 𝑀 

Value of 1 if route n goes to DC d in period t, otherwise 0 𝑅𝑉𝐷𝑛𝑑𝑡 

Value of 1 if route n goes to retailer r in period t, otherwise 0 𝑅𝑉𝑅𝑛𝑟𝑡 

Shelf life of product p 𝐿𝐹𝑝 

Number of jobs created in DC d in period t 𝑆𝐷𝑑𝑡 

Number of jobs created in PC m in period t 𝑆𝑃𝑚𝑡 

Variables:  

Service level of retailer r with vehicle v in period t 𝑆𝐿𝑟𝑣𝑡 

Arrival time of vehicle v at retailer r in period t 𝐴𝑇𝑣𝑟𝑡 

Departure time of vehicle v from retailer r in period t 𝐷𝑇𝑣𝑟𝑡 

Actual demand of retailer r for product p in period t affected by pricing 𝐴𝐷𝑟𝑝𝑡 

Amount of product p transferred from PC m to DC d with vehicle v in period t 𝑋𝑝𝑑𝑝𝑚𝑑𝑣𝑡 

Amount of product p transported from DC d to retailer r with vehicle v in period t 𝑋𝑟𝑝𝑑𝑟𝑣𝑡 

Amount of product p produced at PC m in period t 𝑋𝑝𝑝𝑚𝑡 

Inventory level of product p at DC d in period t 𝐼𝑝𝑑𝑡 

Maximum selling price of product p at retailer r in period t 𝑆𝑃𝑝𝑟𝑡 

Selling price of product p at retailer r in period t 𝑈𝑆𝑃𝑝𝑟𝑡 

Inventory level of product p at retailer r in period t 𝐼𝐿𝑝𝑟𝑡 

1 if DC d is open in period t, otherwise 0 𝑂𝐷𝑑𝑡 

1 if PC m is open in period t, otherwise 0 𝑂𝑃𝑚𝑡 

1 if retailer r is assigned to DC d in period t, otherwise 0 𝛾𝑟𝑑𝑡 
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1 if DC d is assigned to PC m in period t, otherwise 0 𝛿𝑑𝑚𝑡 

1 if vehicle v is selected for route n in period t, otherwise 0 𝜇𝑣𝑛𝑡 

1 if route n is used by vehicle v delivering to retailer r in period t, otherwise 0 𝑌𝑛𝑟𝑣𝑡 

1 if route n is selected in period t, otherwise 0 𝑍𝑛𝑡 

 

3.1. Optimization Model 

(1) 

𝑀𝑖𝑛 𝑍1 = ∑ ∑ 𝐹𝐶𝑚𝑡. 𝑂𝑃𝑚𝑡
𝑇
𝑡=1

𝑀
𝑚=1 + ∑ ∑ 𝐹𝐶𝑑𝑡. 𝑂𝐷𝑑𝑡

𝑇
𝑡=1

𝐷
𝑑=1 + ∑ ∑ ∑ 𝐹𝑐𝑑𝑚𝑡. 𝛿𝑑𝑚𝑡

𝑇
𝑡=1

𝑀
𝑚=1

𝐷
𝑑=1 +

∑ ∑ ∑ 𝐹𝑐𝑟𝑑𝑡 . 𝛾𝑟𝑑𝑡
𝑇
𝑡=1

𝐷
𝑑=1

𝑅
𝑟=1 + ∑ ∑ ∑ 𝑃𝐶𝑝𝑚𝑡. 𝑋𝑝𝑝𝑚𝑡

𝑇
𝑡=1

𝑀
𝑚=1

𝑃
𝑝=1 + ∑ ∑ ∑ 𝐶𝐻𝐼𝑑𝑡 . 𝐼𝑝𝑑𝑡

𝑇
𝑡=1

𝐷
𝑑=1

𝑃
𝑃=1 +

∑ ∑ ∑ ∑ ∑ ∑ 𝑆𝐶𝑚𝑑𝑣𝑡. 𝑋𝑝𝑑𝑝𝑚𝑑𝑣𝑡
𝑇
𝑡=1

𝑁
𝑛=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑀
𝑚=1

𝑃
𝑝=1 +

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑆𝐶𝑑𝑟𝑣𝑡 . 𝑋𝑑𝑟𝑝𝑑𝑟𝑣𝑡
𝑇
𝑡=1

𝑁
𝑛=1

𝑉
𝑣=1

𝑅
𝑟=1

𝑑
𝑑=1

𝑃
𝑝=1  

+ ∑ ∑ ∑ ∑ ∑ 𝑌𝑛𝑣𝑣𝑡. 𝐶𝐹𝑣𝑡 . 𝑅𝐶𝐹𝑣𝑑𝑟𝑡.
𝐷𝑠𝑑𝑟

𝑀𝑠𝑑𝑟𝑣𝑡

𝑇
𝑡=1

𝑉
𝑣=1

𝑟∪𝑑
𝑛=1

𝑅
𝑟=1

𝐷
𝑑=1  

(2) 

𝑀𝑖𝑛 𝑍2 = ∑ ∑ ∑ ∑ ∑ ∑ 𝐷𝑠𝑑𝑟. 𝑀𝑠𝑑𝑟𝑣𝑡 . (𝑅𝐸𝑣𝑟𝑡 + 𝑋𝑝𝑑𝑝𝑚𝑑𝑣𝑡 . 𝑅𝐸𝑝𝑚𝑑𝑣𝑡

𝑇

𝑡=1

𝑉

𝑣=1

𝑅

𝑟=1

𝐷

𝑑=1

𝑀

𝑚=1

𝑃

𝑝=1

+ 𝑋𝑑𝑟𝑝𝑑𝑟𝑣𝑡 . 𝑅𝐸𝑝𝑚𝑑𝑣𝑡) + ∑ ∑ ∑ 𝑅𝐸𝑝𝑑𝑡 . 𝐼𝑝𝑑𝑡

𝑇

𝑡=1

𝐷

𝑑=1

𝑃

𝑝=1

+ ∑ ∑ 𝑅𝐸𝑚𝑡. 𝑂𝑃𝑚𝑡

𝑇

𝑡=1

𝑀

𝑚=1

+ ∑ ∑ 𝑅𝐸𝑑𝑡 . 𝑂𝐷𝑑𝑡

𝑇

𝑡=1

𝐷

𝑑=1

+ ∑ ∑ ∑ 𝑅𝐸𝑝𝑚𝑡 . 𝑋𝑝𝑝𝑚𝑡

𝑇

𝑡=1

𝑀

𝑚=1

𝑃

𝑝=1

 

(3) 

𝑀𝑎𝑥 𝑍3 = ∑ ∑ 𝑆𝐷𝑑𝑡. 𝑂𝐷𝑑𝑡

𝑇

𝑡=1

𝐷

𝑑=1

+ ∑ ∑ 𝑆𝑃𝑚𝑡. 𝑂𝑃𝑚𝑡

𝑇

𝑡=1

𝐷

𝑑=1

 

 S.t:  

(4) ∀𝑑, 𝑡 𝑆𝐷𝑑𝑡. 𝑂𝐷𝑑𝑡 ≤ 1 

(5) ∀𝑑, 𝑡 𝑆𝑃𝑑𝑡. 𝑂𝑃𝑑𝑡 ≤ 1 

(6) ∀𝑚, 𝑝, 𝑡 
𝑋𝑝𝑝𝑚𝑡 = ∑ ∑ 𝑋𝑝𝑑𝑝𝑚𝑑𝑣𝑡

𝑉

𝑣=1

𝐷

𝑑=1

 

(7) ∀𝑝, 𝑑, 𝑡 
𝐼𝑝𝑑(𝑡−1) + ∑ ∑ 𝑋𝑝𝑑𝑝𝑚𝑑𝑣𝑡

𝑉

𝑣=1

𝑀

𝑚=1

= ∑ ∑ 𝑋𝑑𝑟𝑝𝑑𝑟𝑣𝑡

𝑅

𝑟=1

𝑉

𝑣=1

+ 𝐼𝑝𝑑𝑡 
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(8) ∀𝑝, 𝑟, 𝑡 
∑ ∑ 𝑋𝑑𝑟𝑝𝑑𝑟𝑣𝑡

𝑉

𝑣=1

𝐷

𝑑=1

+ 𝐼𝐿𝑝𝑟(𝑡−1) = 𝐴𝐷𝑝𝑟𝑡 + 𝐼𝐿𝑝𝑟𝑡 

(9) ∀𝑑, 𝑡 
∑ 𝐼𝑝𝑑𝑡

𝑃

𝑝=1

≤ 𝐶𝐷𝑑 . 𝑂𝐷𝑑𝑡 

(10) ∀𝑚, 𝑡 
∑ 𝑋𝑝𝑝𝑚𝑡

𝑃

𝑝=1

≤ 𝐶𝑃𝑚. 𝑂𝑃𝑚𝑡 

(11) ∀𝑝, 𝑑, 𝑡 
𝐼𝑝𝑑(𝑡−1) ≤ ∑ ∑ 𝐴𝐷𝑝𝑟𝑡′ .

𝑡′≤(𝑡+𝐿𝐹𝑝)

𝑡′≥𝑡

𝑅

𝑟=1

𝛾𝑟𝑑𝑡′ 

(12) ∀𝑝, 𝑟, 𝑡 
𝐼𝐿𝑝𝑟(𝑡−1) ≤ ∑ 𝐴𝐷𝑝𝑟𝑡′

𝑡′≤(𝑡+𝐿𝐹𝑝)

𝑡′≥𝑡

 

(13) ∀𝑝, 𝑡 
∑ 𝑋𝑝𝑝𝑚(𝑡−1)

𝑀

𝑚=1

≤ ∑ 𝐴𝐷𝑝𝑟𝑡′

𝑡′≤(𝑡+𝐿𝐹𝑝)

𝑡′≥𝑡

 

(14) ∀𝑣, 𝑛, 𝑡 
∑ ∑ ∑ 𝑋𝑝𝑑𝑝𝑚𝑑𝑣𝑡

𝐷

𝑑=1

𝑀

𝑚=1

𝑃

𝑝=1

≤ 𝐶𝑣. 𝜇𝑣𝑛𝑡 

(15) ∀𝑣, 𝑛, 𝑡 
∑ ∑ ∑ 𝑋𝑑𝑟𝑝𝑑𝑟𝑣𝑡

𝑅

𝑟=1

𝐷

𝑑=1

𝑃

𝑝=1

≤ 𝐶𝑣. 𝜇𝑣𝑛𝑡 

(16) ∀𝑟, 𝑑, 𝑡 
∑ ∑ 𝑋𝑑𝑟𝑝𝑑𝑟𝑣𝑡

𝑉

𝑣=1

𝑃

𝑝=1

≤ 𝑀. 𝛾𝑟𝑑𝑡 

(17) ∀𝑚, 𝑑, 𝑡 
∑ ∑ 𝑋𝑝𝑑𝑝𝑚𝑑𝑣𝑡

𝑉

𝑣=1

𝑃

𝑝=1

≤ 𝑀. 𝛿𝑑𝑚𝑡 

(18) ∀𝑟, 𝑑, 𝑡 𝛾𝑟𝑑𝑡 ≤ 𝑂𝐷𝑑𝑡 

(19) ∀𝑑, 𝑚, 𝑡 𝛿𝑑𝑚𝑡 ≤ 𝑂𝐷𝑑𝑡 

(20) ∀𝑑, 𝑚, 𝑡 𝛿𝑑𝑚𝑡 ≤ 𝑂𝑃𝑚𝑡 

(21) ∀𝑡, 𝑟 
∑ 𝛾𝑟𝑑𝑡

𝐷

𝑑=1

≤ 1 

(22) ∀𝑡, 𝑑 
∑ 𝛿𝑑𝑚𝑡

𝑀

𝑚=1

≤ 1 

(23) ∀𝑝, 𝑟, 𝑡 𝐴𝐷𝑝𝑟𝑡 = 𝑀𝐷𝑝𝑟𝑡 − 𝑃𝐸𝑝𝑟𝑡 . 𝑈𝑆𝑃𝑝𝑟𝑡 



385 
 

(24) ∀𝑝, 𝑟, 𝑡 
𝑈𝑆𝑃𝑝𝑟𝑡 = (𝑈𝑆𝑃𝑝𝑟(𝑡−1) −

𝑆𝑃𝑝𝑟𝑡

𝐿𝐹𝑝
) . (1 − ∑ 𝛾𝑟𝑑𝑡

𝐷
𝑑=1 )+𝑆𝑃𝑝𝑟𝑡 . (∑ 𝛾𝑟𝑑𝑡

𝐷
𝑑=1 ) 

(25) ∀𝑟, 𝑣, 𝑡 𝑆𝐿𝑟𝑣𝑡 ≤
1 + 0.15. (

𝐷𝑇𝑣𝑟𝑡 − 𝐴𝑇𝑣𝑟𝑡
𝐶𝑣

)
4

− 𝑆𝑇𝐿𝑟𝑣𝑡

𝐿𝑆𝑇𝑟𝑣𝑡 − 𝑆𝑇𝐿𝑟𝑣𝑡
 

(26) ∀𝑟, 𝑣, 𝑡 𝑆𝐿𝑟𝑣𝑡 ≤
𝑆𝑇𝐸𝑟𝑣𝑡 − 1 + 0.15. (

𝐷𝑇𝑣𝑟𝑡 − 𝐴𝑇𝑣𝑟𝑡
𝐶𝑣

)
4

− 𝑆𝑇𝐿𝑟𝑣𝑡

𝑆𝑇𝐸𝑟𝑣𝑡 − 𝐸𝑆𝑇𝑟𝑣𝑡
 

(27) ∀𝑟, 𝑡 
∑ 𝑍𝑛𝑡 . 𝑅𝑉𝑅𝑛𝑟𝑡

𝑟∪𝑑

𝑛=1

≤ 1 

(28) ∀𝑛, 𝑡 
𝑍𝑛𝑡 ≤ ∑ 𝑅𝑉𝑅𝑛𝑟𝑡 . 𝑂𝐷𝑑

𝐷

𝑑=1

 

(29) ∀𝑣, 𝑟, 𝑡, 𝑛 
𝐷𝑇𝑣𝑟𝑡 ≤ 𝐴𝑇𝑣𝑟𝑡 + ∑

𝐷𝑆𝑑𝑟

𝑀𝑆𝑑𝑟𝑣𝑡

𝐷

𝑑=1

. (1 + 0.15 (
𝐷𝑇𝑣𝑟𝑡 − 𝐴𝑇𝑣𝑟𝑡

𝐶𝑣
)

4

) + 𝑀. (1 − 𝑌𝑛𝑣𝑟𝑡) 

(30) ∀𝑣, 𝑟, 𝑡 
𝐷𝑇𝑣𝑟𝑡 ≥ 𝐴𝑇𝑣𝑟𝑡 + ∑

𝐷𝑆𝑑𝑟

𝑀𝑆𝑑𝑟𝑣𝑡

𝐷

𝑑=1

. (1 + 0.15 (
𝐷𝑇𝑣𝑟𝑡 − 𝐴𝑇𝑣𝑟𝑡

𝐶𝑣
)

4

) + 𝑀. (1 − 𝑌𝑛𝑣𝑟𝑡) 

(31) ∀𝑣, 𝑟, 𝑡 𝐴𝑇𝑣𝑟𝑡 ≥ 𝑆𝑇𝐿𝑟𝑣𝑡 

(32) ∀𝑣, 𝑟, 𝑡 𝐷𝑇𝑣𝑟𝑡 ≤ 𝑆𝑇𝐸𝑟𝑣𝑡 

(33) ∀𝑛, 𝑡 
∑ 𝜇𝑣𝑛𝑡

𝑁

𝑛=1

≤ 𝑀. 𝑍𝑛𝑡 

(34) ∀𝑣, 𝑛, 𝑡 
∑ 𝑌𝑛𝑣𝑟𝑡

𝑅

𝑟=1

≤ 𝑀. 𝜇𝑣𝑛𝑡 

The developed mathematical model includes three objective functions. The first objective 

function (1) aims to minimize the total supply chain cost, which includes fixed facility opening 

costs, fixed allocation costs, production costs, inventory holding costs, transportation costs, 

and vehicle costs depending on traffic conditions and fuel consumption. The second objective 

(2) represents minimizing the total amount of CO2 emissions, which includes CO2 emissions 

due to traffic conditions, transportation between facilities, as well as emissions from storing 

products in DCs, facilities, and production processes. The third objective function indicates the 

number of job opportunities created in the supply chain. In the proposed model, constraints (4) 

and (5) represent the maximum allowable job opportunities created in each period for 

production and distribution centers, respectively.Constraints (6) to (8) indicate that the amount 

of input and output for the facilities must be balanced. Constraints (9) and (10) represent the 

inventory capacity limits for distributors and the production capacity limits, respectively. 

Constraints (14) and (15) ensure vehicle capacity limits. Constraints (11) to (13) prevent 

overproduction and excessive inventory storage, which reduces the amount of expired food 

products. Constraints (16) and (17) ensure that the flow between unassigned pairs is zero. 

According to constraints (18) to (20), the allocation must be assigned to the established 
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facilities. Constraint (21) (and constraint (22)) ensures that a retailer (distributor) can be 

assigned to only one distributor (producer) at most. Constraints (23) and (24) are used to 

demonstrate the dynamic pricing mechanism, which depends on product shelf life and the price 

sensitivity of demand. Overall, these constraints show the relationship between demand, price, 

dynamic pricing function, and the shelf life of products. On the other hand, constraint (24) 

shows the dependency of each DC’s service on retailer demand, which occurs during allocation. 

Constraints (25) to (32) represent the retailer’s service level within the time window, where 

t(X) is a function of t0, the start time of the trip, k, the vehicle capacity, and x, the travel time. 

These constraints indicate the service level based on traffic conditions at the time of arrival and 

departure and highlight the best service level for retailers, considering the randomness of 

service times for the first and last services. Constraints (29) and (30) calculate the time for each 

node to assign a vehicle transporting products along the routes, with distances determined by 

the vehicle's speed. The upper and lower bounds of the time windows, which determine the 

service level provided by the retailer, are represented by constraints (31) and (32), respectively. 

3.2. Moment-based reformulation 

  To bridge the LO and MIO approaches, a moment-based approach was proposed by 

Zinchenko et al. (2008) for radiotherapy optimization.   In this section, we proposed a moment-

based reformulation for our model which is easily solvable on the state-of-the-art solvers like 

Gurobi, CPLEX, Mosek. In supply chain design problem, such as the problem targeted in this 

paper, binary variables are used for two purposes 1- Selection/location: indicator variables 

which are one if a facility is located, opened, or selected. 2- Allocation/assignment: indicator 

variables which are one if a facility is assigned to another facility. There are several approaches 

to split these two problems although these problems are related to each others. In this paper 

first, we try to address selection/location variables by using moment-based approaches. 

Generally, constraints for selection/location have the following general form: 

(35) 
∑ 𝑥𝑖𝑗𝑑𝑖𝑗

𝑛

𝑖=1

≤ 𝐶𝑗. 𝑦𝑗 

Also, we have one constraint like: 

(36) 
∑ 𝑦𝑗

𝑚

𝑗=1

≤ 𝑃 

Variables 𝑥𝑖𝑗 is continuous and usually represents production, inventory or service. Variables 

𝑦𝑗 are binary and accounting for selection or location decisions.  Following figure 2 shows a 

histogram representing the above constraint. Red curve shows the upper bound enforced by 

binary variables. The dashed line shows a solution sample for production. 
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Figure 2. histogram representing 

In the moment-based reformulation instead of using binary variables to enforce this upper 

bound we want to use moments of function. Let 𝑓1 be the production function and 𝑓2 be the 

upper bound function (red line). We denote first and second moment of a function by 𝜇1(𝑓) 

and 𝜇2(𝑓), respectively. Thus, we can add the following constraints to model instead of the 

binary constrains as follows: 

(37) 

𝜇1(𝑓1) ≤ 𝜇1(𝑓2) 

𝜇2(𝑓1) ≤ 𝜇2(𝑓2) 

The first constraint a linear constraint and the average of production should be bounded by the 

average of the upper bound function. However, the second constraint leads to a second-order 

conic constraint as follows: 

(37) 
√∑ 𝑥′𝑖

2

𝑛

𝑖=1

≤ 𝜇2(𝑓2) 

Although this is a nonlinear constraint, there are polynomial time algorithms to solve this kind 

of problems and solver like Gurobi can solve second-order conic problems efficiently. After 

solving we the moment-based model, one can calculate the value of binary problem by 

rounding. Then the assignment/allocation part of the model is a simple assignment problem 

which can be solved easily. Thus, the steps of algorithm are as figure 3.  
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Figure 3. Steps of algorithm 

4. Solution Methodology and Computational Results 

  Considering the different storage conditions for products in Ofogh Kourosh stores, various 

refrigerators are available for storing these products. Their storage capacity, based on the 

different storage capacities of these products in various warehouses, has been considered as a 

fuzzy number according to expert opinion, as shown in Table 1. 

Table 1. Capacity for different products 

Product Capacity Product Capacity Product Capacity 

Milk (1000, 1400, 1850) Cream (750, 1125, 1500) Cheese (1000, 1375, 1700) 

   4.1. A CNN-based algorithm for route optimization  

  In this research, the optimal number and suitable route for facilities are determined with 

the goal of maximizing the coverage of retailers. The route's fitness refers to the intrinsic 

desirability of the target site based on compatibility and incompatibility criteria. In this study, 

a multi-criteria evaluation method is used to calculate route fitness. First, the values for each 

criterion are calculated for each route. After standardizing and assigning weights to each, the 

final fitness is obtained using the weighted linear combination method. The greater the 

distances in the incompatibility criteria, the higher the desirability of a safe route. To achieve 

this, the values of each criterion are standardized in ascending order using the following 

equation. 

(38) 

min( )

max( ) min( )

near
new

d d
D

d d

−
=

−  

 

Step 1

•Solving the moment-based reformulation by an exact solver 

Step 2

•Finding selection/location solution by rounding

Step 3

•Finding assignemnt solution by a simple assignement problem
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On the other hand, shorter distances in the compatibility criteria will result in greater 

desirability for a route. In this case, the values of the criteria will be standardized in descending 

order using the following equation. 

(39) 

max( )

max( ) min( )

near
new

d d
D

d d

−
=

−  

The weight of each criterion indicates its importance and value relative to other criteria. To 

calculate the weights, tables were prepared based on the deep learning method with CNN 

architecture. 

Table 2. The weight of each criteria 

Criterion Weight Sub-criterion Weight 

Compatible 0.5 

Cost 0.445 

Time 0.262 

CO2 0.152 

Economic 0.089 

Job 0.052 

Incompatible 0.5 

Transportation 0.5 

Product Shortage 0.25 

Spoiled Products 0.25 

As mentioned at the beginning of this section, the weighted linear combination method has 

been used to integrate compatibility and incompatibility criteria. Based on the final table of 

criteria and sub-criteria weights, the route fitness for each route is calculated. These route 

fitness values are used in the secure route selection stage as specific information for the 

research. 

. . i i j jSS W C W I= +   

In the above equation, SS represents the route fitness. Wi and Wj are the weights of each 

criterion, and Ci and Ij are the compatibility and incompatibility criteria, 

respectively.Considering that the CNN algorithm can be adapted to the conditions of the 

research problem, changes have been made to the problem-solving method, and the routing and 

allocation model has been designed according to its specific rules. To this end, the optimization 

of the supply chain process, the determination of optimal routes, and the allocation of demand 

are performed. Figure 4 shows how each factor's objective function result is evaluated. Any 

factor that satisfies all three constraint values can move to the next stage, which is the proposed 

network update. Before updating, its value is compared with the value of the other factor's 

function, and the factor with the minimum value is allowed to update the CNN. Otherwise, its 

result will be unacceptable. This stage must also be examined for the other factor, and the 

authorized factors will proceed to the update stage. 
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CF=1.19

CF=1.12

CF=1.23

CF=1.09

UO=0.08

UO=0.108

UO=0.065

UO=0.11

CF=1.19

…...

CF=1.23

…...

UO=0.08

…...

UO=0.065

…...

CF=Cost Function

UO=Under/Over load

N=Num of selected locations

SS=Mean site suitability

N=105

N=85

N=96

N=111

SS=0.42

SS=0.338

SS=0.4

SS=0.336

N=105

……..

N=96

…….

SS=0.42

……..

SS=0.4

…….

UO_ load ≤ 0.1

N≤ 110

SS ≥ 0.3391

 

Figure 4. each factor's objective function result 

The aim of the optimization process is to find the best combination of N routes such that, in 

addition to having the lowest cost (best desirability), they also satisfy the problem's constraints. 

In the first three steps, the goal is to generate a solution and evaluate its quality based on the 

objective function. In the final step, which is the most important part of the CNN algorithm, 

the goal is to record these solutions for future steps and assist in improving problem-solving 

by other agents in subsequent iterations. By performing these operations, the optimization 

process is completed. At the beginning of the model-solving process, an equal amount is 

allocated to all safe routes. The only difference between the safe routes during the selection 

phase in the first step is their heuristic values. As mentioned, the combination of safe routes is 

evaluated by the objective function; therefore, the agents tend to select routes with the highest 

desirability based on their exploratory nature. As a result, with successive selections of better 

routes by the agents, more pheromone is placed on them. According to the points discussed in 

the recent section, the objective function value of an agent is acceptable if the agent satisfies 

all three constraints. In this case, the value is recorded, and if another agent also reaches this 

stage, a comparison is made. Ultimately, the proposed algorithm, named the CNN-based supply 

chain optimization algorithm, is suggested for solving the problem, and its pseudocode is 

shown in the table 3. 

Table 3.  pseudocode of proposed algorithm 

Input data sets  

Initialize CSz, k, itr, (CSz: colony size; k= neighbourhood radius; itr: number of iterations; initial level of 

pheromone, Evaporating 

rate; local escape probability) 
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In Figure 5, section 'a', both alpha and beta values, being equal, have the same effect on the 

generated solutions, such that the resulting costs are within a certain range and do not show 

much dispersion. With the increase in beta values, in sections 'b', 'c', and 'd', the dispersion of 

the solutions becomes quite evident. In this case, the solutions identified as the minimum are 
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created purely by chance. On the other hand, increasing the beta value means placing more 

importance on the spatial fit of the demand points concerning the CNN parameter. Therefore, 

by keeping the alpha coefficient constant and increasing the beta coefficient, the probability of 

selecting routes with higher spatial fit increases. In this situation, the model selects product 

transfer and supply locations without regard to its previous route selections or the costs 

associated with those selections. Lower alpha parameter values cause less emphasis to be 

placed on previous solutions during each iteration, leading the model to randomly select a 

combination of safe locations in each iteration. The higher the beta coefficient, the greater the 

spatial fit of the selected routes. These changes are illustrated in Figure 6 for four different beta 

value scenarios. 

Alfa=1

   

Alfa=2.5

Alfa=1.5

 

 

Alfa=2

 

 

Figure 5. Impact of Equal and Increasing Alpha and Beta Coefficients on Cost Dispersion and Solution Stability 
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Beta=0.5

Mean=0.376

Beta=1

Mean=0.385

Mean=0.425

Beta=1.5

Mean=0.485

Beta=3

 
Figure 6. Effect of Increasing Beta Coefficient on Spatial Fit of Selected Routes under Constant Alpha 

The alpha coefficient is used to preserve the good results obtained in each iteration for use by 

agents in subsequent iterations. In this section, the beta value is considered 0.5, and the results 
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are examined by changing the alpha value. As the alpha value increases, the dispersion of 

solutions in terms of cost is reduced. This is shown in Figure 4. However, some of these 

solutions, due to the increased number of selected routes, occasionally cannot meet the route 

quantity constraint, which is why they are not selected. Another effect of increasing the alpha 

coefficient on the solutions in each iteration is that, due to the increased ability of CNN to select 

a route, the likelihood of routes selected in the early iterations being chosen by subsequent 

agents increases. This causes the costs of each agent in each iteration to converge gradually 

toward a specific value, preventing dispersion. 

Based on the above, it becomes clear that in both cases, high values of either alpha or beta 

prevent the model from reaching a satisfactory solution. The model has been run five times 

considering the values of these two parameters, and the results are shown in Tables 4 and 5. 

Table 4. Model Performance Under Varying Alpha Values (Beta Fixed) 

Number Alpha Abundance Location Convergence # of Locations 

1 5/0 069/0 372/0 2988/0 94 

2 1 071/0 342/0 2914/0 105 

3 5/1 073/0 355/0 395/0 96 

4 2 0745/0 359/0 33/0 109 

5 5/2 068/0 348/0 356/0 110 

 

Table 5. Model Performance Under Varying Beta Values (Alpha Fixed) 

Number Alpha Abundance Location Convergence # of Locations 

1 5/0 069/0 372/0 298/0 94 

2 1 066/0 382/0 3670/0 104 

3 5/1 075/0 421/0 3937/0 95 

4 2 071/0 442/0 4328/0 103 

5 5/2 0704/0 452/0 4606/0 107 

 

In this research, the minimum final value of each combination of routes is considered as its 

evaluation criterion. However, due to the desire to further explore the problem space, the 

combination of the two parameters, alpha and beta, has been set to 0.5 and 1, respectively. 

Table 6 shows the results of the problem-solving using the proposed method. The solutions 

obtained by the proposed method are highly competitive in terms of the first and second 

objective function values. 
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Table 6. Results of the problem-solving using the proposed method 

Cheese Cream Milk Method 

0.02 0.03 0.02 CNN 

0.001 0.001 0.001 
Deep Learning and SC 

Optimization 

0.04 0.03 0.04 Pareto 

0.02 0.02 0.02 Global programming 

 

According to the table above, Figure 7 displays the values of the objective functions. The Pareto 

optimal solutions help the decision-maker select the most appropriate solution. For example, if 

the first objective function is prioritized, the decision-maker can choose the Min-Max or LP-

metric method. Conversely, if the second objective function is prioritized, the decision-maker 

can choose the goal programming method to solve the problem. 

 
Figure 7. the values of the objective functions 

Figure 8 shows the computation time of the lexicographic weighted Tchebycheff method 

compared to the proposed methods. The lexicographic weighted Tchebycheff method requires 

less computation time than the MODM method. The third Pareto optimal solution obtained 

using the lexicographic weighted Tchebycheff method is the best solution in terms of 

computation time. 
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Figure 8. computation time of the lexicographic weighted Tchebycheff method compared to the proposed 

methods 

An increase in demand leads to an increase in both objective functions, and a 50%+ increase 

causes the problem to become infeasible. Moreover, even a small change in demand results in 

changes in the values of both objective functions. An increase in mi reduces the values of the 

objective functions, and a 50% decrease makes the problem infeasible. The results obtained 

can reduce the total supply chain costs as well as the total CO2 emission costs. 

4.2. Numerical Results 

  In this research, a multi-objective and multi-period mathematical model was considered, 

and the sustainable supply chain model for perishable dairy products, along with customer 

demand forecasting using a machine learning approach, was examined. The tools used in this 

study include mathematical programming models, a data-driven approach, and others for 

solving the problem under study. The model presented in this research was coded and solved 

using the NSGA-II metaheuristic algorithm in MATLAB software. The data and parameters 

used will be applied in the model using a numerical example.Here, the proposed model was 

coded using MATLAB software, and the written program was executed on a computer with a 

2.3 GHz Core i7 processor and 4GB RAM. The execution time in all runs was less than 140 

minutes. The model's validation was carried out through sensitivity analysis of some key 

parameters in the model, and the model's efficiency was also examined. To compare the 

efficiency of the NSGA-II metaheuristic algorithm, multiple examples in different categories 

and sizes were designed to evaluate the proposed model. The descriptions related to each 

category of problems are presented in the table 7. 
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Table 7. Model Performance by Scale 

𝒕 𝒑 𝒓 𝒅 𝒎 # of Problems Size of Problems 

4 4 5،8 5،7 2 2 Small 

5،7 5،7 10،12،15 9،11،14 3،5 3 Medium 

7،9 7،9 18،21،25 17،21،25 5،7 3 Large 

 

For validation and solving the proposed model, 8 different approaches were considered based 

on the problem's indicators. The proposed model was designed for eight different scenarios. 

The model includes three objective functions based on a sustainability approach. In the 

developed model, the economic aspect (first objective function) seeks to minimize total costs, 

the environmental aspect (second objective function) aims to reduce carbon dioxide emissions, 

and the social aspect (third objective function) strives to increase job opportunities. The 

performance of the developed model, based on the problem's indicators, is shown in Table 7, 

A notable point in this table is the categorization of problem cases into three sections—small, 

medium, and large scales—for evaluating the performance of the developed model. Table 4-2 

displays the performance of the developed model based on the problem's indicators, dividing 

the results of the NSGA-II metaheuristic algorithm according to the values of the first, second, 

and third objective functions. 

Table 8. optimal values of the objective functions for different scenarios with varying problem sizes 

 

Solution 

time 
NSGA-II Parameters 

Problems 

Time 

(Sec) 

Obj 3 

(Unit) 

Obj 2 

(Thousand) 

Obj1 

(Million) 
𝑡 𝑝 𝑟 𝑑 𝑚 

23/122 250 23.618 15.628 4 4 5 5 2 1 

S
m

al
l 

S
ca

le
 

28/653 274 28.225 18.749 4 4 8 7 2 2 

34/628 286 31.276 23.658 5 5 10 9 3 3 

M
ed

iu
m

 

S
ca

le
 

44/325 298 38.485 31.562 5 5 12 11 3 4 

52/623 312 37.459 38.156 7 7 15 14 5 5 

78/749 345 36.458 46.123 7 7 18 17 5 6 

L
ar

g
e 

S
ca

le
 

109/132 386 36.967 64.325 9 9 21 21 7 7 

135/496 459 36.541 69.635 9 9 25 25 7 8 
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The results in Table 8 show the optimal values of the objective functions for different scenarios 

with varying problem sizes. Based on the results, it can be understood that as the size of the 

problem increases in different dimensions, the values of the first and second objective 

functions, which respectively represent the total supply chain costs and the amount of carbon 

dioxide emissions, increase. In other words, as the problem size and demand increase, the total 

supply chain costs rise. Additionally, with the increase in the number of established units, 

including production and distribution centers and the need for transportation between different 

centers to meet customer demand, the increase in carbon dioxide emissions is logical. However, 

due to the sustainability approach in the supply chain, the amount of carbon dioxide emissions 

initially increases, but from Scenario 5 onward, it stabilizes and reaches sustainability, 

indicating the supply chain's stability in terms of carbon dioxide emissions. Moreover, the value 

of the third objective function, which represents the number of job opportunities created, shows 

an upward trend as the problem size increases. In other words, as the number of established 

units increases, the number of job opportunities created throughout the supply chain also rises, 

which indicates the supply chain's sustainability in maintaining and developing job 

opportunities. Additionally, the performance of the developed model based on the problem's 

indicators and the model's execution time in each scenario to reach the optimal solution is 

shown in Table 7. The results show that as the problem size increases, based on the indicators, 

the model's solving time also increases. This is logical given the increased number of 

distribution and production centers, the model's complexity, and the increased number of 

iterations required to reach the optimal solution. The results related to the changes in the first, 

second, and third objective functions, as well as the solving time of the supply chain model 

based on the problem scenarios, are as follows: 

 

Figure 9. Changes in the first objective function for each scenario 

Finally, according to Figure 9 it can be understood that with an increase in the problem size (in 

other words, with an increase in the number of established centers), the total supply chain costs 

in the first objective function show an upward trend. It is worth mentioning that in Figure 9, 

which illustrates the changes in the first objective function based on scenario values, the growth 

rate of the expected costs increases more sharply when transitioning from TP6 to TP7 (with 

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9

O
b

j 1

Scenario



399 
 

changes in the indices and the establishment of various centers). However, after this point, the 

growth rate of the expected costs continues at a slower pace. 

 

Figure 10. Changes in the scecond objective function for each scenario 

Additionally, the changes in the second objective function, which represent the amount of 

carbon dioxide emissions, initially show an upward trend as the problem size increases, 

reaching its maximum at TP4 (figure 10). Afterward, the trend becomes relatively stable, 

indicating the stability of carbon dioxide emissions in the supply chain. In other words, the 

results of the stable trend in the second objective function after scenario 4 show that despite 

various disruptions in the supply chain, the model's performance is not significantly affected, 

and the model exhibits good stability. Furthermore, the changes in the third objective function 

based on the problem scenarios are illustrated in the figure 11. 
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Figure 11. Changes in the third objective function for each scenario 

 

Figure 12. Changes in the run time for each scenario 

In order to examine the impact of various parameters on the developed mathematical model, 

sensitivity analysis of different parameters based on varying parameter values in the developed 

model has been considered. This sensitivity analysis is based on the values of the objective 

functions and parameters, as follows: 

Sensitivity analysis on 𝑀𝐷𝑝𝑟𝑡based on the first objective function:  

According to the results of Table 9, in this section, the sensitivity analysis related to different 

product demand values in the market is performed based on the first objective function in the 
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NSGA-II metaheuristic algorithm. Based on the results, it can be understood that as product 

demand in the market increases, the value of the first objective function shows an upward trend, 

and the total supply chain costs increase. 

Table 9. Sensitivity Analysis of Market Demand on Obj1 

Obj 1 𝑀𝐷𝑝𝑟𝑡 Row 

16.658 50 1 

18.526 100 2 

23.541 150 3 

24.638 200 4 

28.547 250 5 

 

 

Figure 13. Sensitivity Analysis of Market Demand on Obj1 

Sensitivity analysis on 𝑀𝐷𝑝𝑟𝑡 based on the second objective function: 

According to the results of Table 10, in this section, the sensitivity analysis related to different 

product demand values based on the second objective function is conducted using MATLAB 

software. Based on the results, it can be understood that as product demand increases, the value 

of the second objective function, which indicates the amount of carbon dioxide emissions, 

initially shows an upward trend, then reaches its maximum value, and stabilizes. In other 

words, the trend of this graph has two parts: the first part is an increasing and expected trend, 

where with the increase in demand, the carbon dioxide emissions rise due to the construction 

of new centers. However, in the second part of the graph, due to the reduction in stored products 

in distribution and production centers, the amount of carbon dioxide emissions follows a 

relatively stable and sustainable rate, which also indicates the sustainability of the proposed 

model with increasing demand. 
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Table 10. Sensitivity Analysis of Product Demand on Obj2 

Obj 2 𝑀𝐷𝑝𝑟𝑡 Row 

23.618 50 1 

25.681 100 2 

27.345 150 3 

26.931 200 4 

26.983 250 5 

 

Figure 14. Sensitivity Analysis of Product Demand on Obj2 

5. Conclusions 

     In conclusion, this study designed a data-driven, multi-objective model for a sustainable 

perishable dairy supply chain, integrating economic, social, and environmental dimensions. To 

address demand uncertainty, a machine learning approach was employed for forecasting, and 

the proposed model was subsequently solved using the NSGA-II algorithm in MATLAB, with 

its performance evaluated in a real-world dairy industry context. The results demonstrated that 

while rising demand causes increases in both the total cost and carbon emission objective 

functions—with an excess of 50% leading to infeasibility even minor demand fluctuations 

affect these objectives. Conversely, an increase in parameter mi reduced their values, though a 

50% decrease also resulted in infeasibility. The model effectively reduces overall supply chain 

costs and carbon emission expenses. Furthermore, scalability analysis revealed that as the 

problem size grows, the costs and emissions initially rise due to expanded infrastructure and 

transportation needs; however, emissions eventually stabilize, underscoring the model’s 

environmental sustainability. Simultaneously, the third objective function, social sustainability 

measured by created job opportunities, shows a consistent upward trend with network 

expansion, confirming the model’s capability to enhance socioeconomic benefits while 

maintaining operational and ecological feasibility. 
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