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Abstract Smart cities, leveraging advanced technologies such as the Internet of Things (IoT), Digital Twin, and Artificial Intelligence, have 

fundamentally transformed the management of urban infrastructure and services. These technologies enable improvements in quality of life, 

resource consumption optimization, and enhanced environmental sustainability. However, the complexity and diversity of factors influencing 

smart infrastructure development necessitate multi-criteria and uncertainty-based decision-making frameworks to select optimal solutions 

considering technical, operational, and economic criteria. This study employs a combination of the fuzzy Delphi method for extracting and 

consolidating expert opinions and the GRA-VIKOR method for multi-criteria analysis and prioritization of smart infrastructure development 

options. The fuzzy Delphi process models the ambiguity and uncertainty in expert opinions using fuzzy numbers, while the Grey Relational 

Analysis (GRA) assists in determining the relative weights of criteria. Subsequently, the VIKOR algorithm evaluates and ranks the best balanced 

options considering conflicts and trade-offs among criteria. The results indicate that resource and energy optimization, data integration and real-

time monitoring, citizen-centric services, and sustainability are the most critical criteria in smart infrastructure development decision-making. 

The integrated fuzzy Delphi and GRA-VIKOR approach effectively reduces decision-making complexity and highlights optimal alternatives by 

balancing economic, environmental, and operational objectives. Ultimately, this method can assist urban policymakers in prioritizing smart city 

projects. The use of a fuzzy Delphi framework combined with GRA-VIKOR multi-criteria analysis represents an effective and scientific approach 

to optimizing decision-making processes in smart urban infrastructure development. By providing a structured tool for aggregating expert insights 

and analyzing complex criteria, this approach facilitates more precise policymaking, enhances sustainability, and improves resource efficiency 

in smart cities. Future research is recommended to focus on improving dynamic models and data security within this framework. 

        Keywords: Smart cities, Artificial Intelligence (AI), Digital Twins, Decision-making, Connected Communities, 

Internet of Things (IoT), Real-time Monitoring 
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1. Introduction 

Today, the rapid growth of urban populations, increasing pressure on resources, and the urgent 

need for sustainability have compelled cities to move toward becoming “smart cities.” These cities 

leverage technologies such as the Internet of Things (IoT), big data, artificial intelligence, and 

digital twins to optimize urban services and enhance responsiveness. In particular, the use of digital 

twins to build real-time and accurate urban models enables decision-makers to simulate and 

analyze various scenarios before implementation (Adreani et al., 2023). This transformative 

technology offers the potential to improve quality of life and promote urban sustainability. As the 

core of smart city technology, IoT collects real-time data from diverse infrastructures—such as 

transportation, energy, and wastewater management—enabling real-time decision-making (Shen, 

2025). Simultaneously, digital twins provide a real-time, virtual representation of infrastructure 

systems, enhancing monitoring capabilities, error prediction, and predictive maintenance. In one 

case, a system integrating IoT and digital twins was developed to manage urban underground 

channels, increasing fault prediction accuracy by up to 92% and reducing service disruptions by 

40% (Shen, 2025). 

On the other hand, over the past decade, the combination of urban population pressures, increasing 

complexity, and environmental challenges such as climate change has forced cities to rethink their 

structural frameworks. Technologies like IoT and digital twins have emerged as the cornerstones 

of digital transformation in urban systems. Studies in 2025 indicate that employing IoT in 

sustainable urban planning significantly improves real-time monitoring, crisis management, and 

the efficiency of energy and waste systems (Waqar, 2025). Furthermore, digital twins not only 

offer a dynamic and precise representation of urban structures but also allow for simulation of a 

wide range of scenarios—from traffic and environmental conditions to emergency services—prior 

to actual deployment. This technology equips urban managers with powerful tools for predictive 

decision-making and rational service design (El Agamy, 2024). 

As the importance of urban resilience grows in the face of natural disasters such as floods, 

heatwaves, and air pollution, the combined use of digital twins and IoT becomes increasingly vital. 

According to published forecasts, by 2025, over 500 cities will be utilizing digital twin 

technologies, with potential economic savings exceeding $280 billion by 2030 (Al-Raeei, 2024). 

Such outcomes underscore the critical role these technologies play in enhancing resilience and 

efficiency in urban management. 

Despite the capabilities of modern technologies, decision-making regarding the development of 

smart urban infrastructure remains complex and ambiguous. A wide range of technical, economic, 

environmental, and operational criteria are interwoven, necessitating frameworks capable of 

analyzing and weighting this diversity. The integration of methods such as the Fuzzy Delphi, 

multi-criteria decision-making (MCDM) techniques, and models like VIKOR or GRA can 

effectively address this complexity. For instance, in the domain of sustainable urban services, a 

fuzzy environment-based MCDM model combining VIKOR and GRA has demonstrated its ability 

to produce effective decisions with lower computational costs (Belošević, 2025). Similarly, in the 

design of smart streets for autonomous vehicles and cyclists, a hybrid approach incorporating 

Fuzzy Delphi, ANP, and DEMATEL has been applied (Fayyaz et al., 2024). These findings 

suggest that hybrid MCDM approaches are valuable tools for managing uncertainty and 

prioritizing in complex decision-making scenarios. 

Research further confirms that technologies such as the Internet of Things (IoT) play a crucial role 

in guiding smart city development. Specifically, IoT applications in sustainable urban planning—
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through real-time monitoring, crisis management, and efficient use of energy and waste—have 

significantly enhanced the quality of urban governance (Waqar, 2025). Moreover, digital twin 

technologies offer substantial added value in simulating and analyzing various scenarios. 

According to ABI Research forecasts, leveraging digital twins in urban planning could lead to 

global cost savings of over €259 billion by 2030 (ABI Research, 2025). Cities today face mounting 

challenges such as climate change and natural disasters. For example, more than 500 cities are 

expected to implement digital twin technologies by 2025 to strengthen their resilience against 

flooding, air pollution, and urban heatwaves (Al-Raeei, 2024). Despite the high potential of these 

technologies, urban decision-making still requires scientific frameworks to evaluate a diverse set 

of criteria, technical, economic, environmental, and social. Employing integrated methods such as 

Fuzzy Delphi, VIKOR, and GRA can lead to smarter, more transparent, and effective decision-

making in the development of urban infrastructure. 

 

2. Theoretical Foundations and Literature Review 

 

Urban Smart Infrastructure 

Urban smart infrastructure refers to a network of systems and digital technologies designed to 

enhance efficiency, resilience, and quality of life in urban environments. These infrastructures 

consist of sensors, communication networks, and analytical platforms that continuously collect 

and process real-time data to improve decision-making in key domains such as transportation, 

energy, water, and waste management (Isarsoft Knowledge Hub, 2024). By leveraging smart 

infrastructure, cities can utilize this data for optimal resource allocation, reducing operational 

costs, enabling rapid crisis response, and promoting environmental sustainability. For example, 

smart power grids and intelligent traffic management systems have been shown to significantly 

reduce energy consumption and urban congestion (Isarsoft Knowledge Hub, 2024). 

Moreover, smart infrastructure is regarded as one of the foundational pillars of smart cities, 

integrating human, technological, and procedural components to enable unified and intelligent 

urban service management (Jacques, 2024). In addition to enhancing technical efficiency and 

operational performance, smart infrastructure also fosters greater social engagement. Recent 

studies show that these technologies contribute to improved social well-being, the promotion of 

urban equity, and increased resilience to climate change by modernizing the governance and 

management of urban resources and services (Andreev, 2025). 

 

Internet of Things (IoT) in Infrastructure Management 

 

The Internet of Things (IoT) refers to a network of smart devices and sensors that collect real-time 

environmental data and transmit it to management systems. In the context of urban infrastructure, 

this technology is applied across various sectors including transportation, electricity, waste 

management, public health, safety, and governance. Recent research demonstrates that integrating 

IoT with edge and cloud architectures—alongside widespread sensor networks and citizen-centric 

platforms—creates a comprehensive ecosystem that enhances sustainability, operational 

efficiency, and quality of life. However, despite its technical benefits, IoT also introduces 

challenges such as cybersecurity risks, interoperability issues, data governance concerns, and the 

need for active citizen engagement (Wairimu, 2025). 

Recent literature reviews suggest that applying IoT in urban management has led to smarter 

resource distribution, reduced operational costs, faster crisis response, and improved 
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environmental sustainability. Specifically, in sectors such as smart energy and transportation, IoT-

based decision-making systems have significantly decreased energy consumption and traffic 

congestion (Zaman, 2024). Moreover, the integration of IoT with cloud computing plays a crucial 

role in enhancing urban decision-making, resource allocation, and the quality of public services 

(Das, 2024). While IoT promises a revolution in urban management, it also faces significant 

barriers such as managing a rapidly growing number of connected devices, addressing security 

threats, and ensuring system interoperability. For example, a 2025 study proposed a 

comprehensive solution for managing hundreds of IoT devices at the city scale (Sousa et al., 2025). 

Huzzat (2025) conducted an in-depth review of the role of digital twin technology in shaping smart 

cities, emphasizing its utility in providing a framework for urban analysis, simulation, and 

comprehensive planning. Similarly, Alvi (2025) explored the methodological landscape and 

innovations in infrastructure enabled by digital twins. From an academic perspective, El Agamy 

(2024) analyzed over 4,200 articles to examine digital twin architectures, performance metrics, 

and platform types in urban environments. Therias (2023) investigated how urban digital twins 

can serve as a foundation for enhancing resilience, particularly in times of crisis and environmental 

change. Additionally, a Reuters report (2024) highlighted that more than 500 cities are expected 

to adopt digital twin technologies by 2025, emphasizing their effectiveness in managing disasters 

such as flooding, air pollution, and urban heatwaves. 

Zaman et al. (2024) provided a comprehensive review of IoT applications in urban management, 

covering fundamental architectures and prevailing standards, while also addressing key challenges 

and successful implementation strategies. Salih (2025) introduced a detailed framework examining 

the components of IoT in smart cities, highlighting implementation challenges and future research 

needs. In a systematic literature review, Ishaq and Farooq (2023) emphasized that technical 

uncertainties and concerns regarding security and privacy are particularly prominent in IoT-based 

smart infrastructure projects. Kumar et al. (2023) analyzed the challenges of developing and 

maintaining urban IoT testbeds, focusing on issues related to data security and management across 

endpoint, edge, and cloud layers. Dahmane (2025) reviewed data collection methods, urban issue 

prioritization techniques, and service performance measurement, offering a conceptual framework 

for methodological analysis. Finally, the UN-Habitat (2024) report highlighted key strategies, 

policies, and institutional capacities required for smart city development. 

 

 

 

 

 

 

 

 

Table 1. Summary of Previous Research 

No. 
Authors 

& Year 
Title of Study Methodology Key Findings 

Identified Gap / 

Critique 

1 

El-

Agamy et 

al. (2024) 

A Comprehensive 

Review of Digital 

Twins in Smart 

Cities 

Systematic 

review of over 

4,200 articles 

Identification of 

architectures, 

models, and 

performance metrics 

Lack of localized 

frameworks for 

developing 

countries 
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No. 
Authors 

& Year 
Title of Study Methodology Key Findings 

Identified Gap / 

Critique 

2 
Zaman et 

al. (2024) 

IoT in Smart City 

Development 
Literature review 

Technical 

challenges, 

architectures, and 

implementation 

solutions 

Limited focus on 

multi-criteria 

decision-making 

3 
Shen 

(2025) 

IoT and Digital Twin 

Integration for 

Urban Sewage 

Infrastructure 

Data-driven case 

study 

Improved fault 

prediction accuracy 

up to 92% 

No cost-benefit 

analysis provided 

4 
Waqar et 

al. (2025) 

IoT’s Role in 

Sustainable Urban 

Planning 

Statistical 

analysis and 

surveys 

Emphasis on 

sustainability and 

real-time monitoring 

Lack of 

integration with 

other digital 

technologies 

5 
Huzzat et 

al. (2025) 

Digital Twins in 

Future Smart Cities 

Analytical 

review 

Strategic role of 

digital twins in 

future urban 

planning 

Absence of 

decision-making 

frameworks 

6 
Fayyaz et 

al. (2024) 

Smart Street Design 

using MCDM 

Techniques 

Hybrid: Fuzzy 

Delphi, ANP, 

DEMATEL 

Prioritized model 

for urban street 

design 

Focused solely on 

transportation 

context 

7 
Salih et 

al. (2025) 

Challenges in IoT 

Implementation in 

Urban Infrastructure 

Qualitative 

analysis & 

conceptual 

framework 

Categorization of 

technical and 

implementation 

barriers 

Requires further 

empirical 

investigations 

8 
Alvi et al. 

(2025) 

Infrastructure 

Innovation via 

Digital Twins 

Foresight-based 

review 

Highlights data 

standards and open 

architectures 

Lacks evaluation 

model 

development 

9 
Turek et 

al. (2024) 

Digital Twin 

Applications in 

Urban Infrastructure 

Multi-purpose 

case study 

Enhancement of 

resilience and 

infrastructure 

efficiency 

No cost-

effectiveness 

evaluation 

10 
Kumar et 

al. (2023) 

Urban IoT Testbed 

Infrastructure 

Systematic 

literature review 

Analysis of 

scalability 

constraints in 

technical 

deployment 

No focus on 

localization 

strategies 

 

 

A review of recent literature reveals that numerous studies have explored the role of emerging 

technologies such as the Internet of Things (IoT) and digital twins in urban management. For 

example, the works of El Agamy et al. (2024), Huzzat et al. (2025), and Zaman et al. (2024) have 

effectively demonstrated the conceptual and practical potentials of these technologies in enhancing 

the resilience, sustainability, and efficiency of urban infrastructure. Additionally, studies such as 

those by Fayyaz et al. (2024) and Waqar et al. (2025) have employed multi-criteria and hybrid 
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decision-making methods to prioritize components of smart urban development. 

However, a closer examination of the reviewed studies indicates that most of them either focus 

exclusively on a single technology, such as IoT or digital twins or rely primarily on qualitative and 

descriptive analyses. Furthermore, few studies have comprehensively addressed the integration of 

these two technologies within a structured framework for optimal decision-making in smart 

infrastructure development. Despite the widespread use of multi-criteria decision-making 

(MCDM) approaches in urban studies, many existing models remain one-dimensional and lack 

real-time analytical capabilities. 

This reveals a significant gap in the literature: the absence of an integrated and reliable framework 

for prioritizing and making informed decisions on the development of smart urban infrastructure, 

one that effectively combines real-time IoT data with the analytical power of digital twins. The 

present study seeks to address this gap by developing a practical, multi-criteria framework—based 

on the integration of the Fuzzy Delphi method and GRA-VIKOR—to design and evaluate a 

development model for smart infrastructure. This model aims to assist urban policymakers in 

making transparent, data-driven, and balanced infrastructure decisions. 

 

3. Research Methodology 

 

Research is a systematic process for generating knowledge and uncovering relationships between 

phenomena through the collection, analysis, and interpretation of data using scientific methods. 

Employing an appropriate research methodology not only enhances the accuracy of results but also 

facilitates the generalizability of findings. The selection of a research method must be based on 

the objectives of the study, the nature of the problem, the type of data involved, and the desired 

level of analysis, enabling the researcher to achieve practical and insightful outcomes with optimal 

use of resources. 

This study, aimed at designing a development framework for smart urban infrastructure based on 

digital technologies and the Internet of Things (IoT), is classified as applied research in terms of 

its objective, and as descriptive-survey in terms of its execution method. In the initial stage, 

theoretical data related to key concepts—including smart infrastructure, IoT technologies, digital 

twins, and multi-criteria decision-making (MCDM) methods—was collected through library-

based research, including academic articles, specialized books, and credible international reports. 

To localize the proposed framework, the Fuzzy Delphi method was employed to screen and 

consolidate expert opinions in identifying and prioritizing the most influential criteria. This step 

involved the participation of experts in smart cities, municipal IT managers, and specialists in 

urban infrastructure. Subsequently, for analyzing and prioritizing development options, a hybrid 

MCDM approach was used, incorporating the GRA (Grey Relational Analysis) to determine the 

relative weights of criteria and the VIKOR method to rank alternatives under conditions of 

conflicting criteria. 

This methodological integration allowed the study to both minimize uncertainty in expert 

judgments through Fuzzy Delphi and optimize multi-criteria decisions in environments 

characterized by incomplete or ambiguous data (grey systems). For enhanced analytical precision, 

the decision-making environment was modeled using fuzzy and grey theory approaches. 

Finally, the proposed development model was formulated based on the results of the MCDM 

analysis, validated, and supplemented with implementation strategies. In terms of data collection, 

the study employed a mixed-methods approach, combining desk research with field data gathered 

through expert questionnaires, semi-structured interviews, and expert panel analysis. 
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Best-Worst Method (BWM) 

 

The Best-Worst Method (BWM) is a recent multi-criteria decision-making (MCDM) technique 

proposed by Rezaei (2015), which relies on pairwise comparisons to determine the weights of 

alternatives and related criteria. This method addresses several limitations of traditional pairwise 

comparison methods such as the Analytic Hierarchy Process (AHP) and Analytic Network Process 

(ANP) most notably issues related to inconsistency. 

One of the main advantages of BWM is its ability to significantly reduce the number of required 

pairwise comparisons by focusing on reference-based comparisons. In this approach, decision-

makers only need to specify: 

• the relative preference of the best criterion over all other criteria, and 

• the relative preference of all criteria over the worst criterion. 

By eliminating secondary comparisons, BWM is more efficient and faster than other existing 

methods for determining criteria weights in MCDM problems. 

Definition 1: A comparison aij is considered a reference comparison if either i is the best criterion 

or j is the worst criterion. 

Definition 2: A comparison aij is a secondary comparison if neither i nor j is the best or worst 

criterion, and aij≥1. 

The BWM process consists of the following steps: 

Step 1: Define the Set of Decision Criteria 

Based on a review of the literature and expert opinions, a set of relevant criteria is identified and 

denoted as: 

{c1,c2,…,cn}  

Step 2: Identify the Best and Worst Criteria 

The decision-maker selects the best criterion (e.g., the most important or desirable) and the worst 

criterion (e.g., the least important or desirable). In cases where multiple criteria are considered 

equally best or worst, a discretionary selection may be applied. 

Step 3: Determine the Preferences of the Best Criterion over Others 

Using a scale ranging from 1 to 9, the preference of the best criterion over each of the other criteria 

is expressed, as defined by a linguistic scale (see Table 4). The resulting preference vector is used 

to form the equations of the BWM model, as shown in Equation (2). 

(2) AB = (aB1, aB2, … , aBn) 

In this step, each comparison value aBjrepresents the preference of the selected best criterion B 

over criterion j. Clearly, the self-comparison value is: 

aBB=1  

Step 4: Determine the Preferences of All Criteria over the Worst Criterion 

Similarly, using a scale from 1 to 9, the decision-maker assesses the preference of each criterion j 

over the worst criterion W. These comparisons are recorded to form the Worst-to-Others vector, 

denoted as: 

ajW,where j=1,2,…,n  

Again, the consistency rule applies such that: 

aWW=1  

These preference vectors (Best-to-Others and Others-to-Worst) are used to formulate the following 

set of optimization equations to derive the optimal weights for each criterion, as will be described 
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in Step 5. 

(3) Aw = (a1W, a2W, … , anW)T 

Each comparison value ajW represents the preference of criterion j over the selected worst criterion 

W. Clearly, the self-comparison yields: 

aWW=1  

These two sets of pairwise comparisons, Best-to-Others (aBj) and Others-to-Worst (ajW)  form 

the basis for constructing an optimization model aimed at calculating the optimal weights for each 

criterion such that the maximum absolute deviation between derived weights and input 

comparisons is minimized. 

 

formulation of the optimization model (Step 5): 

Table 3. Linguistic Scale for Pairwise Comparisons in BWM 

Linguistic Judgment Numerical Value 

Absolutely more important 9 

Extremely more important 8 

Very strongly more important 7 

Strongly more important 6 

Moderately more important 5 

Slightly more important 4 

Weakly more important 3 

Very weakly more important 2 

Equally important 1 

Step 5: Determining the Optimal Weights 

The optimal weights for all criteria are represented as: 

(W1∗,W2∗,…,Wn∗)  

The objective is to calculate these weights in a way that minimizes the maximum absolute 

deviation between the computed weights and the input comparison values. Specifically, the goal 

is to minimize the largest discrepancy among all values from the following set: 

{|wB − aBjwj|, |wj − ajWwW|} 

This leads to the following minimax optimization model, formulated as Equation (4): 

 min max 
j

{|wB − aBjwj|, |wj − ajWwW|} 

 S. t. 

 ∑ wj = 1

j

 

(4) wj ≥ 0, for all j 

 

Equation (4) can be transformed into the following linear programming model, presented as 

Equation (5): 

 min ξ 

 S. t. 
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|
wB

wj
− aBj| ≤ ξ, for all j 

 |
wj

wW
− ajW| ≤ ξ, for all j 

 ∑ wj = 1

j

 

(5) wj ≥ 0, for all j 

By solving Model (5), the optimal weights(w1
∗, w2

∗ , … , wn
∗ )^*) and ξ∗ index are obtained. 

The solution space of Model (5) includes all positive values of wj for j=1,…,n, such that the sum 

of weights must equal 1, and the maximum deviation from pairwise comparison ratios is 

minimized to ξ 

However, in the original formulation proposed by Rezaei (2015), the model may produce multiple 

optimal solutions when dealing with decision problems involving more than three criteria. To 

address this limitation and ensure a unique solution, Rezaei (2016) proposed a revised linear model 

that reformulates the problem in a way that guarantees uniqueness of the weights. 

The linear form of the BWM optimization model proposed in Rezaei's (2016) study is expressed 

as follows: 

In this revised model, instead of minimizing the maximum deviation among the set: 

{|
wB

wj
− aBj| , |

wj

wW
− ajw|},  

the objective is to minimize the maximum absolute deviation among the alternative set: 

{|wB − aBjwj|, |wj − ajWwW|} 

This formulation transforms the original nonlinear model into a linear programming problem, 

which ensures a unique optimal solution. Accordingly, the model is reformulated as Equation (6): 

 min max 
j

{|wB − aBjwj|, |wj − ajWwW|} 

 S. t. 

 ∑ wj = 1

j

 

(7) wj ≥ 0, for all j 

Equation (7) can be further transformed into the following linear programming model, ensuring 

compatibility with standard optimization solvers and guaranteeing a unique solution: 

 min ξL 

 S. t. 

 |wB − aBjwj| ≤ ξL, for all j 

 |wj − ajWwW| ≤ ξL, for all j 
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 ∑ wj = 1

j

 

(8) wj ≥ 0, for all j 

 

The above linear model yields a unique optimal solution. By solving Model (7), the optimal 

weights (w1
∗, w2

∗ , … , wn
∗ ) as well as the linear consistency index ξL∗ are obtained. 

In this formulation, the value of ξL∗ directly reflects the consistency of the pairwise comparisons 

made by the decision-maker. Therefore, there is no need to calculate a separate consistency ratio, 

as required in earlier versions of the model (e.g., Equation (5)). 

In general, values of ξL∗ close to zero indicate a high level of consistency in the input judgments 

(Rezaei, 2016). 

 

Introduction to the Fuzzy Integrated Approach: GRA Combined with VIKOR 

 

In this section, the fundamental concepts of the VIKOR and GRA methods, as well as the newly 

developed fuzzy integrated GRA-VIKOR approach, are briefly introduced. 

The VIKOR method was first introduced by Opricovic (1998) as a compromise ranking method, 

particularly useful in decision-making scenarios involving multiple conflicting criteria. VIKOR 

seeks to identify a compromise solution based on the principle of "closeness to the ideal solution 

and mutual consensus through aggregated scores." The method has been widely adopted by 

researchers for ranking alternatives in various multi-criteria decision-making (MCDM) problems. 

Let us denote the alternatives as a1, a2, … , am. For each alternative ai, the performance with 

respect to the jth criterion is denoted by fij, where: 

fij=the performance value of criterion j for alternative ai the performance value of criterion  

The VIKOR ranking algorithm can be summarized in the following steps: 

Step 1: Determine the Best and Worst Values 

For each criterion j, determine the best value fj∗  and the worst value fj− across all alternatives. 

For benefit-type criteria, the best and worst values are calculated as follows: 

 fj
∗ = max

i
fij , i = 1,2, … , m 

(8) fj
− = min

i
fij , i = 1,2, … , m 

Step 2: Calculate Si and Ri  for i=1,2,…,m 

 Si = ∑ wj(fj
∗ − fij)/(fj

∗ − fj
−) 

n

j=1

 

(9) Ri = max[wj(fj
∗ − fij)/(fj

∗ − fj
−) ] 

 

Step 3: Calculate the Qi  Values for i=1,2,…,m 

In this step, the VIKOR index Qi is computed for each alternative using Equation (10): 
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(10) Qi = v [
Si − S∗

S− − S∗
] + (1 − v) [

Ri − R∗

R− − R∗
] 

Grey Relational Analysis (GRA) Technique 

 

Grey Relational Analysis (GRA) was first introduced by Deng (1982). The grey systems theory is 

an algorithm designed to analyze the uncertain relationships between elements of a system and a 

reference sequence. It has been widely applied in multi-criteria decision-making (MCDM) 

problems. 

A key strength of this approach lies in its ability to capture both qualitative and quantitative 

relationships among complex system factors. It measures the degree of similarity or closeness 

between alternatives using a distance-based metric (Kuo & Liang, 2011). 

The following outlines the key concepts and computational procedure for the GRA model. 

In an MCDM problem, let: 

X={x0,x1,x2,…,xi,…,xm}  

denote a set of sequences (alternatives), where: 

• x0 is the reference sequence, 

• xi is the comparative sequence for alternative i. 

Let x0j and xij represent the values of the jth criterion for the reference and comparative sequences, 

respectively, with j=1,2,…,n 

Then, the grey relational coefficient γ(x0j,xij), which reflects the relationship between the 

reference and comparative values at criterion jj, is calculated using Equation (11): 

(11) γ(x0j, xij) =
min

i
min

j
∆ij + ξ max

i
max

j
∆ij

∆ij + ξ max
i

max
j

∆ij
 

where: 

Δij=∣x0j−xij∣  
and ξ∈[0,1] is the distinguishing coefficient, used to mitigate the effect of extreme values and 

enhance stability in the analysis. The typical value for ξ  is 0.5, unless specified otherwise. 

• i∈I={1,2,…,m} denotes the set of alternatives 

• j∈J={1,2,…,n} denotes the set of criteria 

After computing all the grey relational coefficients γ(x0j,xij), the Grey Relational Grade (GRG), 

which represents the overall similarity between the reference sequence x0x_0x0 and each 

comparative sequence xi , is calculated using Equation (12): 

(12) γ(x0j, xij) = ∑ wjγ(x0j, xij), ∑ wj = 1

n

j=1

n

j=1

 

where wj denotes the weight of the criterion or attribute j. 

Fuzzy GRA-VIKOR Hybrid Method 

 

In this section, a novel fuzzy multi-criteria decision-making (MCDM) technique is introduced to 

address complex decision problems under uncertainty and ambiguity. This approach is based on 

the integration of the VIKOR and GRA methods within a fuzzy environment, aiming to effectively 
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handle vague, imprecise, or linguistic data in real-world MCDM scenarios. 

The proposed fuzzy GRA-VIKOR method leverages the strengths of both VIKOR (compromise 

ranking) and GRA (grey relational analysis) to improve decision quality in situations where precise 

information is lacking or judgments are subjective. 

The linguistic scale used in this method for evaluating alternatives is shown in Table 4. 

 

Table 4. Fuzzy Rating Scale 

Fuzzy Number Linguistic Term Triangular Fuzzy Scale 

9 Complete Importance (8, 9, 10) 

8 Absolute Importance (7, 8, 9) 

7 Very High Importance (6, 7, 8) 

6 Fairly High Importance (5, 6, 7) 

5 Moderate Importance (4, 5, 6) 

4 Slight Preference (3, 4, 5) 

3 Low Importance (2, 3, 4) 

2 Very Low Importance (1, 2, 3) 

1 Equal Importance (1, 1, 1) 

 

General Steps of the Fuzzy GRA-VIKOR Method (Adapted from Li & Zhao, 2016) 

 

Step 1: Constructing the Fuzzy Decision Matrix 

In this step, a pairwise fuzzy decision matrix is formed, representing the evaluation of each 

alternative with respect to each criterion. 

Assume the decision problem involves m potential alternatives and n evaluation criteria. The 

performance rating of each alternative with respect to a given criterion is expressed using triangular  

(13) x̃ij =
1

k
[x̃ij

1 + x̃ij
2 + ⋯ + x̃ij

k] =
1

k
∑ x̃ij

k

K

k=1

 

where x~
ijk  denotes the fuzzy rating assigned by decision-maker k for alternative i with respect to 

criterion j. 

Accordingly, a multi-criteria decision-making (MCDM) problem for group decision-making in a 

fuzzy environment can be represented as follows: 

(14) D̃ = [

x̃11 x̃12 ⋯ x̃1n

x̃21 x̃22 ⋯ x̃2n

⋮ ⋮ ⋮ ⋮
x̃m1 x̃m2 ⋯ x̃mn

] = [x̃ij]m×n
 

 

 

Where x~ij, ∀i,j represents the fuzzy rating (fuzzy performance value) of the potential alternative 

Ai, for i=1,2,...,m with respect to the criterion Cj, for j=1,2,...,n. 

To ensure consistency among the evaluation criteria, the initial fuzzy decision matrix must be 

converted into a comparable scale. Therefore, the normalized fuzzy decision matrix is denoted as 

R~ (Chen, 2000). 
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 R̃ = [r̃ij]m×n
 

 r̃ij = (
lij

uj
+ ,

mij

uj
+ ,

uij

uj
+) , j ∈ B 

 r̃ij = (
lj
−

uij
,

lj
−

mij
,
lj
−

lij
) , j ∈ C 

 uj
+ = max

i
uij  if j ∈ B 

(15) lj
− = min

i
lij    if j ∈ C 

 

Where B denotes the set of benefit criteria, and C represents the set of cost criteria. 

Step 2: Determining the Positive and Negative Ideal Reference Series 

After calculating the normalized values of various criteria, two reference series are defined: 

• The positive ideal solution A+ 

• The negative ideal solution A− 

These are determined according to Equations (16) and (17). 

(16) A+ = [r̃01
+ , r̃02

+ , … , r̃0n
+ ] 

(17) A− = [r̃01
− , r̃02

− , … , r̃0n
− ] 

 

Where r̃0j
+ = max

i
(r̃ij),  r̃0j

− = min
i

(r̃ij), and j=1,2,...,n 

Step 3: Calculating the Fuzzy Grey Relational Coefficient 

The positive and negative ideal solutions are treated as reference series, and each alternative is 

considered a comparative series. 

The fuzzy grey relational coefficient of each alternative with respect to the positive and negative 

ideal solutions is calculated based on Equations (18) and (19). 

(18) 

γ(r̃0j
+ , r̃ij) =

min
i

min
j

d̃ij
+ + ξ max

i
max

j
d̃ij

+

d̃ij
+ + ξ max

i
max

j
d̃ij

+

=
min

i
min

j
d(r̃0j

+ , r̃ij) + ξ max
i

max
j

d(r̃0j
+ , r̃ij)

d(r̃0j
+ , r̃ij) + ξ max

i
max

j
d(r̃0j

+ , r̃ij)
 

(19) 

γ(r̃0j
− , r̃ij) =

min
i

min
j

d̃ij
− + ξ max

i
max

j
d̃ij

−

d̃ij
− + ξ max

i
max

j
d̃ij

−

=
min

i
min

j
d(r̃ij, r̃0j

− ) + ξ max
i

max
j

d(r̃ij, r̃0j
− )

d(r̃ij, r̃0j
− ) + ξ max

i
max

j
d(r̃ij, r̃0j

− )
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Where ξ∈[0,1] is the distinguishing coefficient. 

Step 4: Calculating Si and Ri Values 

The values of Si and Ri, for i=1,2,...,m, are calculated based on Equations (20) and (21). 

(20) Si = ∑ wjγ(r̃0j
+ , r̃ij)

n

j=1

 

(21) 
Ri = max

j
wjγ(r̃0j

− , r̃ij) 

Where Si represents the distance of alternative ii from the positive ideal solution, and Ri indicates 

the distance of alternative i from the negative ideal solution. 

Also, wj denotes the weights of the criteria, obtained through the Best-Worst Method (BWM). 

Step 5: Calculating the Qi Value 

The value of Qi, for i=1,2,...,m, is calculated according to Equation (22). 

(22) Qi = v (
S∗ − Si

S∗ − S−
) + (1 − v) (

Ri − R∗

R− − R∗
) 

Where   S∗ = max
i

Si  ،S− = min
i

Si  ،R∗ = min
i

Ri     ، R− = max
i

Ri. 

The parameter v is introduced as the weight of the group utility strategy, while (1−v) represents 

the weight of the individual regret. 

Step 6: Ranking Alternatives Based on Qi Values 

Based on the calculated Qi values, the alternatives are ranked in ascending order, such that the 

alternative with the smallest Qi receives the highest (first) rank. 

The alternatives are ranked according to the minimum values of Qi, under the condition that the 

following two criteria are simultaneously satisfied: 

• Condition 1 (Acceptable Advantage): 

Alternative A1 is selected if: 

Q(A2)−Q(A1)≥1/m−1  

where A2 is the second-ranked alternative, and mm is the total number of alternatives. 

• Condition 2 (Acceptable Stability in Decision-Making): 

Alternative A1 must also be ranked first based on either Si or Ri values. 

•  

4. Research Findings 

In general, the research process consists of two main phases: qualitative and quantitative. The 

essential steps of the study are presented as follows: 

Many researchers have examined the components involved in various projects across different 

industries. Subsequently, through expert sessions, interviews with key stakeholders, and the use of 

brainstorming techniques, a list of relevant factors was identified, as reported in Table 5. 

In total, 19 key components were identified for the development of smart urban infrastructure 

based on the Internet of Things (IoT) and digital technologies. 

Table 5. Key Components for Smart Urban Infrastructure Development 

No. Component Brief Description Source 

1 Sensors and Actuators 
Collecting environmental data 

and enabling automated response 
MoonTechnolabs (2025) 
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2 Network Connectivity 
Transmitting data from sensors to 

systems 
Digi.com (2025) 

3 Edge Computing Fast, low-latency data processing MDPI (2025) 

4 Cloud Computing 
Scalable data analysis and 

storage 
TechTarget (2025) 

5 Security and Privacy Data and system protection Deloitte Report (2025) 

6 Analytics and AI 
Data-driven decision-making and 

forecasting 
Reuters (2024) 

7 Digital Twin 
Urban model simulation and 

monitoring 
Georgia Tech (2024) 

8 Data Management 
Data warehousing and integrated 

analytics 
Digi.com (2025) 

9 
Centralized 

Management 
Unified control of all devices Digi.com (2025) 

10 Smart Utilities 
Smart electricity, water, and gas 

systems 
Digi.com (2025) 

11 
Intelligent 

Transportation (ITS) 

Traffic and road safety 

management 
Wikipedia ITS (2025) 

12 
Environmental 

Sensors 

Air quality, temperature, 

pollution monitoring 
Digi.com (2025) 

13 Parking Sensors 
Parking guidance and reduced 

traffic 
Digi.com (2025) 

14 Public Surveillance Cameras and event detection DeviceAuthority (2025) 

15 Exchange Standards 
Facilitating interoperability 

among systems 

Wikipedia TALQ & NGSI-

LD (2025) 

16 
Open Data / 

Participation 

Transparency and public 

collaboration 

EcoRenewableEnergy 

(2025) 

17 5G Communications 
High-speed broadband for time-

sensitive systems 
MDPI (2025) 

18 
Urban Operations 

Center 

Optimized urban management 

control 
SmartCitySS (2025) 

19 
Resilience and 

Sustainability 

Crisis response and climate 

change adaptation 
Reuters (2024) 

 

4.3. Determining the Weights of Evaluation Indicators 

In the process of designing a smart urban infrastructure development model, determining the 

weight (relative importance) of the indicators plays a crucial role, as these weights ultimately guide 

the analysis and prioritization of implementation options. The selected indicators are typically 

diverse and multidimensional, encompassing technical, economic, social, environmental, and 

managerial components. Given the multi-criteria nature of decision-making in smart infrastructure 

contexts, traditional statistical weighting methods are insufficient to address the complexity and 

interdependencies among criteria. To overcome this challenge, the present study adopts a modern 

and structured multi-criteria decision-making (MCDM) approach. 
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In the first step, the fuzzy Delphi method was employed to gather expert opinions and reduce 

uncertainty in judgments. By leveraging fuzzy logic, this method enables the modeling of 

uncertainty inherent in human assessments and leads to a consensus-based extraction of indicator 

importance. Subsequently, the Grey Relational Analysis (GRA) method was applied to determine 

the final weights of the indicators. Based on numerical comparisons of indicator behavior across 

various scenarios, GRA calculates the degree of influence each indicator has on the entire system. 

The integration of the fuzzy Delphi and GRA methods offers the advantage of combining 

qualitative expert insights with quantitative precision, resulting in numerically derived weights for 

the evaluation criteria. The results of this process indicate that indicators such as "resource 

sustainability," "data integration and AI," "real-time monitoring," and "citizen participation" hold 

the highest priority. These weights were subsequently used as inputs to the VIKOR model to enable 

balanced final decision-making and prioritization of infrastructure development options, while 

accounting for conflicts among criteria. 

 

Table 6. Most and Least Important Criteria Identified by Experts 

Identified as "Least 

Important" 

Identified as "Most 

Important" 
Criterion (Indicator) 

– 1, 5, 8 Feasibility 

6, 10 3, 7 Implementation Cost 

1, 4, 5 9 Impact on Sustainability 

8 2, 10 
Contribution to Citizen 

Services 

– 4, 6 Flexibility and Scalability 

2, 3, 7, 9 – 
Level of Innovation and 

Technology 

In the following stage, the prioritization of the best criterion relative to all other criteria is 

conducted. This information is derived from the distribution and collection of Best-Worst Method 

(BWM) questionnaires, in which the respondents (experts) were asked to determine the priority of 

the best criterion over the remaining ones. 

It should be noted that in cases where multiple criteria were perceived as the best by an expert, the 

selection of the "best" criterion was entirely discretionary. Accordingly, the pairwise comparison 

vectors of the best criterion versus other criteria are presented in Table 9. 

Table 9. Pairwise Comparison Vectors of the Best Criterion vs. Other Criteria (BWM) 

Exper

t No. 

Best 

Criterion 

Feasibilit

y 

Implementatio

n Cost 

Impact on 

Sustainabilit

y 

Contributio

n to Citizen 

Services 

Flexibilit

y & 

Scalabilit

y 

Innovatio

n & 

Technolog

y 

1 Feasibility 1 3 9 2 4 2 

2 
Implementati

on Cost 
4 1 3 1 2 8 

3 
Impact on 

Sustainability 
2 1 1 2 2 9 

4 

Contribution 

to Citizen 

Services 

2 3 8 1 1 4 

5 
Flexibility & 

Scalability 
1 2 9 3 1 2 



451  

6 
Innovation & 

Technology 
2 8 2 4 1 1 

 

In a similar manner, the prioritization of all other criteria relative to the worst criterion is 

conducted. This information was also obtained through the distribution and collection of Best-

Worst Method (BWM) questionnaires, in which the experts were asked to determine the priority 

of all other criteria with respect to the identified worst criterion. 

It is important to note that in cases where more than one criterion was perceived as the worst by 

the experts, the selection of the “worst” criterion was made entirely at their discretion. 

Accordingly, the pairwise comparison vectors of other criteria versus the worst criterion are 

presented in Table 10. 

Table 10. Pairwise Comparison Vectors of Other Criteria Relative to the Worst Criterion 

(Expert Judgment via BWM) 

Exper

t 

Executabili

ty 

Implementati

on Cost 

Impact on 

Sustainabili

ty 

Contributi

on to 

Citizen 

Services 

Flexibilit

y & 

Scalabilit

y 

Innovatio

n & 

Technolo

gy 

Worst 

Criterion 

1 9 2 2 2 9 2 Executability 

2 2 3 9 4 2 8 
Implementati

on Cost 

3 1 2 3 1 1 3 
Impact on 

Sustainability 

4 2 8 5 2 2 4 

Contribution 

to Citizen 

Services 

5 3 3 2 8 4 1 
Flexibility & 

Scalability 

6 4 1 1 5 3 2 
Innovation & 

Technology 

Ultimately, the Best-Worst Method (BWM) was employed to determine the consistency ratios of 

the pairwise comparisons as well as the weights of the influencing criteria. The respective criterion 

weights were obtained by solving the linear programming model of the BWM (Equation 7) for 10 

expert respondents, using GAMS software version 24.3 and the CPLEX solver. 

The resulting weights represent the average values derived from the experts’ judgments, 

consolidated into a single normalized weight vector, as presented in Table 11. 

 

Table 11. Final Weights of Key Evaluation Criteria (Using BWM Method) 

Criterion 
Expe

rt 1 

Expe

rt 2 

Expe

rt 3 

Expe

rt 4 

Expe

rt 5 

Expe

rt 6 

Expe

rt 7 

Expe

rt 8 

Expe

rt 9 

Expe

rt 10 

Final 

Weig

ht 

Feasibility 0.356 0.100 0.148 0.151 0.326 0.149 0.139 0.400 0.121 0.205 0.210 

Implementati

on Cost 
0.138 0.175 0.352 0.137 0.137 0.043 0.353 0.146 0.106 0.038 0.163 

Impact on 

Sustainability 
0.046 0.125 0.102 0.048 0.042 0.191 0.145 0.121 0.394 0.128 0.134 

Contribution 

to Citizen 

Services 

0.149 0.375 0.205 0.103 0.126 0.106 0.185 0.042 0.212 0.359 0.186 
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Flexibility 

and 

Scalability 

0.103 0.175 0.148 0.356 0.189 0.362 0.139 0.204 0.121 0.103 0.190 

Innovation 

and 

Technologica

l Level 

0.207 0.050 0.045 0.205 0.179 0.149 0.040 0.088 0.045 0.167 0.118 

ξL* 

(Consistency 

Index) 

0.056 0.025 0.057 0.055 0.053 0.064 0.064 0.038 0.030 0.051 0.049 

 

The value of ξL∗represents the consistency ratio for the pairwise comparisons. As shown in Table 

11, the comparisons demonstrate a high level of consistency, with a value of 0.049, which is close 

to zero, indicating reliable judgments (Rezaei, 2016). Furthermore, the criteria "Risk Severity" and 

"Implementation Cost" exhibit relatively higher importance and weight compared to other 

indicators. 

 

Next Step – Calculation of SiS_i, Ri, and the Compromise Indicator Qi 

In this section, the distance of each alternative Ai from the positive ideal solution Si, the distance 

from the negative ideal solution Ri, and the compromise indicator Qi for each alternative are 

calculated using Equations (20) through (23). 

These computations are summarized in Table 12. 

It should be noted that the parameter v, which represents the weight assigned to the strategy of 

maximum group utility, is set to 0.5 in this study. 

Table 12. Values of SiS_i, RiR_i, and QiQ_i for Each Alternative 

Alternative Si Ri Qi 

R₁ 0.539 0.185 0.744 

R₂ 0.499 0.138 0.618 

R₃ 0.574 0.131 0.341 

R₄ 0.472 0.173 0.895 

R₅ 0.542 0.151 0.550 

R₆ 0.531 0.139 0.520 

R₇ 0.551 0.119 0.347 

R₈ 0.486 0.135 0.647 

R₉ 0.604 0.102 0.088 

R₁₀ 0.545 0.153 0.548 

R₁₁ 0.613 0.125 0.182 

R₁₂ 0.596 0.124 0.230 

R₁₃ 0.596 0.100 0.100 

R₁₄ 0.627 0.100 0.000 

R₁₅ 0.543 0.125 0.410 

R₁₆ 0.523 0.193 0.835 

R₁₇ 0.593 0.152 0.393 

R₁₈ 0.517 0.130 0.518 

R₁₉ 0.607 0.132 0.237 
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Final Step – Ranking the Alternatives Based on Si, Ri, and Qi Values 

According to the Fuzzy GRA-VIKOR methodology, alternatives are ranked based on the values 

of Si (group utility), Ri (individual regret), and the composite Qi index. The alternative with the 

lowest values across all three indicators is considered the top-ranked option. 

As illustrated in the results, Alternative R₁₄ achieves Rank 1, as it demonstrates the lowest Q value 

(Q = 0.000) and simultaneously satisfies both of the acceptability conditions of the Fuzzy GRA-

VIKOR method: 

1. Acceptable Advantage Condition: 

Q(R9)−Q(R14)=0.088−0.000=0.088≥1m−1=118≈0.055  

2. Acceptable Stability in Decision-Making: 

R14 also ranks first in terms of the R index (individual regret), confirming the stability of 

the ranking result. 

Hence, R₁₄ is a unique optimal solution, offering the most balanced and desirable option under the 

given decision criteria and uncertainty environment. 

These results are summarized in Table 17, which presents the final ranking of all alternatives. 

 

 

Table 17. Final Ranking of Alternatives Based on S, R, and Q Values 

Ris S S Rank R R Rank Q Q Rank 

R₁ 0.539 7 0.185 18 0.744 17 

R₂ 0.499 3 0.138 12 0.618 15 

R₃ 0.574 12 0.131 9 0.341 7 

R₄ 0.472 1 0.173 17 0.895 19 

R₅ 0.542 8 0.151 14 0.550 14 

R₆ 0.531 6 0.139 13 0.520 12 

R₇ 0.551 11 0.119 4 0.347 8 

R₈ 0.486 2 0.135 11 0.647 16 

R₉ 0.604 16 0.102 3 0.088 2 

R₁₀ 0.545 10 0.153 16 0.548 13 

R₁₁ 0.613 18 0.125 6 0.182 4 

R₁₂ 0.596 15 0.124 5 0.230 5 

R₁₃ 0.596 14 0.100 2 0.100 3 

R₁₄ 0.627 19 0.100 1 0.000 1 

R₁₅ 0.543 9 0.125 7 0.410 10 

R₁₆ 0.523 5 0.193 19 0.835 18 

R₁₇ 0.593 13 0.152 15 0.393 9 

R₁₈ 0.517 4 0.130 8 0.518 11 

R₁₉ 0.607 17 0.132 10 0.237 6 

 

4.4. Analysis of VIKOR Model Results 

The results derived from the VIKOR decision-making model reveal that component R₁₄ ranks first, 

with a Q value of 0.000, and is identified as the most balanced and optimal alternative across all 

evaluation criteria. Despite holding the lowest rank in the S index (with the highest value S = 
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0.627), it secures the top rank in both the R and Q indices. This outcome indicates that while R₁₄ 

may not have the closest overall distance (S) to the ideal solution, it demonstrates exceptional 

performance in terms of maximum individual regret (R) and in the final compromise solution index 

(Q). This suggests that R₁₄ achieves a well-balanced and stable performance across all criteria 

without relying heavily on any specific strength, an indicator of robustness and decision-making 

consistency. 

Furthermore, components R₉ (Q = 0.088) and R₁₃ (Q = 0.100) are ranked second and third, 

respectively. Notably, these components also perform very well in the R index, ranking second 

and third. This illustrates that these alternatives not only score high on average across all criteria 

but also maintain resilience under the worst-case conditions, making them reliable choices. 

In contrast, components such as R₄ and R₁, despite achieving favorable ranks in the S index (1st 

and 7th, respectively), rank very low in the final Q ranking (19th and 17th), primarily due to high 

R values. This reveals that over-reliance on average performance (S) without considering the 

maximum deviation (R) can result in unstable or misleading decisions. 

Components such as R₃, R₁₂, and R₁₇, which appear in the middle range of the ranking (7th to 11th), 

reflect moderate, yet not outstanding performance, lacking distinctive competitive advantages. 

Additionally, alternatives R₄, R₁₆, and R₁ are ranked at the bottom of the Q index, indicating 

significant imbalance across evaluation criteria. Specifically, R₄ while ranking first in the S 

index—holds the lowest overall Q ranking (19th), exemplifying a clear trade-off imbalance in 

decision-making. This contrast reinforces the strength of the VIKOR method, which, by 

accounting for both group utility and individual regret, and emphasizing compromise solutions, 

provides a more balanced and comprehensive ranking approach compared to other MCDM 

techniques. 

 

5. Discussion and Conclusion 

 

The findings of this study highlight that the development of smart urban infrastructure requires a 

multidimensional and integrative perspective, one that simultaneously addresses technical, 

economic, social, environmental, and managerial aspects. By utilizing technologies such as the 

Internet of Things (IoT), Digital Twin, real-time data analytics, and intelligent algorithms, not only 

can the quality of urban services be enhanced, but the effectiveness of urban planning can also be 

significantly improved. 

The results from the weighting of evaluation criteria and ranking of components revealed that some 

elements, such as real-time data management, security and privacy, resource sustainability, and 

urban operations centers carry greater importance and should be prioritized in strategic planning. 

Moreover, the VIKOR analysis, as a multi-criteria decision-making method, demonstrated that 

balancing between evaluation criteria plays a critical role in identifying the optimal alternative. 

While some components performed well in isolation (based on S or R indices), they did not rank 

highly in the final Q index due to a lack of overall balance. This underscores the necessity of 

employing hybrid approaches like GRA-VIKOR, which can distinguish between average 

performance and critical deviation, providing a more precise and holistic evaluation. 

The use of the Fuzzy Delphi Method during the criteria extraction phase also contributed 

significantly by reducing ambiguity in expert judgments and thereby increasing the overall 

accuracy of the analysis. 

A comparison of this study’s findings with the existing literature reveals that the research has 

addressed a notable scientific gap particularly by operationalizing the integration of IoT and 
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Digital Twin technologies within a structured decision-making framework. Whereas prior studies 

have often focused solely on conceptual analyses or isolated applications of these technologies, 

the proposed model in this study offers a unified approach for data aggregation, real-time analysis, 

and intelligent decision-making. This is especially beneficial in crisis situations, environmental 

changes, or rapid urban expansion, where it can offer a competitive advantage for urban authorities 

and policymakers. 

From a practical perspective, the outcomes of this research can serve as a strategic foundation for 

the development of policies and action plans by municipalities, urban planning agencies, and 

technology firms. Based on the derived rankings, decision-makers can allocate financial and 

technical resources according to well-defined priorities while minimizing risks related to 

uncertainty and system misalignment. Finally, the proposed framework is designed with scalability 

and adaptability in mind, making it suitable for various urban contexts and capable of being 

deployed in both pilot programs and large-scale smart city initiatives. 
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