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Abstract: In recent years, the integration of graph theory and time series analysis has enabled more robust models for
understanding complex financial systems. This paper presents a hybrid framework combining Minimum Spanning Tree
(MST) and Dynamic Time Warping (DTW) to analyze interdependence among stock market entities. MST simplifies the
high-dimensional correlation structures into a tree-like topology, highlighting key relationships between assets. DTW,
on the other hand, allows flexible temporal alignment of financial time series, making it ideal for comparing asset
dynamics under variable time lags. Using synthetic stock data for 20 companies, we demonstrate how this framework
effectively identifies structural shifts, systemic risk clusters, and central nodes in market behavior. The results emphasize
the combined strength of topological and temporal models in modern quantitative finance.
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Introduction

The increasing complexity and interconnectivity of global financial markets demand more advanced
analytical tools to detect and interpret structural dependencies and systemic risks. Traditional models
that rely on static correlation matrices or linear relationships often fail to uncover dynamic patterns,
particularly during periods of market turbulence.One approach that has gained traction in recent years
is the combination of network theory with time series similarity techniques.This combination
leverages the structural mapping capabilities of Minimum Spanning Tree (MST) and the temporal
flexibility of Dynamic Time Warping (DTW) to create a comprehensive view of market behavior.
The need for hybrid models arises from the growing inadequacy of correlation-based techniques in
detecting asynchronous but semantically similar behaviors in asset prices (Denkowska & Wanat,
2021). DTW, originally used in speech recognition, allows for a non-linear alignment of time series
that vary in length or tempo. Its application in financial markets has shown promise in modeling co-
movements and identifying temporal anomalies (Landmesser, 2022).

MST, on the other hand, has been extensively used in financial network analysis. It simplifies
complex correlation structures by generating a sparse yet informative graph that captures the strongest
inter-asset connections. This has proven particularly effective in times of market crises when systemic
relationships become more pronounced (Hatipoglu, 2017). While MST reveals the structural topology
of asset correlations, it does not account for timing mismatches. Conversely, DTW accounts for
timing but lacks a global view of the network. The integration of both can offer a powerful toolkit for
analyzing market dynamics.

Recent studies such as Li et al. (2023) and Huang et al. (2017) have highlighted the importance of
combining structural and temporal approaches to detect market contagion and identify early-warning
signals. Their findings suggest that hybrid models can better characterize regime shifts and improve
predictive performance.Moreover, the visualization of MSTs offers intuitive insights for decision-
makers by highlighting market hubs and isolated nodes, which may represent potential vulnerabilities
or investment opportunities (Wang et al., 2020). The flexibility of DTW allows it to detect delayed
reactions between related assets, which is crucial in high-frequency trading and cross-market analysis.
When integrated with MST, the result is a layered understanding of not just who is connected to
whom, but also when and how intensely.

This paper aims to propose and test a hybrid MST-DTW framework using synthetic stock data. The
objective is to evaluate the ability of the model to detect structural shifts, systemic clusters, and central
actors in a simulated market environment.We hypothesize that this framework will provide improved
insight into systemic risks and temporal dependencies compared to standalone models.

Related Work

Financial markets have increasingly been analyzed through the lens of network theory and time series
similarity techniques. Among these, the application of Minimum Spanning Trees (MST) and
Dynamic Time Warping (DTW) has gained considerable attention in the last decade.

In one study, Li et al. (2023) demonstrated how DTW-based networks could identify shifts in stock
market connectedness during global events such as COVID-19. Their results showed that DTW was
more effective than Pearson correlation in capturing similarity patterns in turbulent periods.

Schaub et al. (2022) brought a higher-order approach to signal processing on networks, including
simplicial complexes, allowing richer representations of asset co-movements and multilayer networks
beyond MST.

While MST provides topological insight, it lacks the capacity to detect temporal misalignments or
lead-lag effects among assets. This limitation has led researchers to integrate or compare MST with
temporal similarity measures such as DTW.

DTW, though originally developed for speech and handwriting recognition, has recently been used
to compare financial time series that are asynchronous or have nonlinear alignments (Landmesser,
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2022).

Recent work by Siudak (2021) investigated sectoral dependencies in the U.S. stock market using
complex network models. The study demonstrated how MST could isolate core and peripheral
sectors, aiding portfolio risk diversification.

Makowski et al. (2021) proposed a DTW-based similarity measure in neurophysiological signals,
highlighting its robustness in noisy environments—a property increasingly valuable in volatile
financial time series.

Bjornson et al. (2022) explored the signal processing challenges of emerging wireless networks,
indirectly influencing financial signal processing by introducing adaptive filters and non-stationary
behavior modeling using DTW.

Adal1 et al. (2021) introduced a complex-valued signal processing framework that enhances time-
frequency resolution, a feature beneficial when applied to price movement signals in algorithmic
trading

Several hybrid models combining MST and DTW have also been proposed, offering a dual
perspective on market structures and temporal dynamics For instance, Denkowska and Wanat (2021)
developed a systemic risk model for the European insurance sector by using MST for topology and
DTW for time-dependent behavior.

have applied MST to study how network structures evolve under market stress, uncovering central
assets and clusters that influence systemic behavior (Huang et al., 2017; Wang et al., 2020).

Despite these advances, most studies remain limited to specific case studies or short timeframes. This
paper aims to contribute by synthesizing MST and DTW into a unified analytical pipeline and testing
it on simulated data.

The MST model, introduced to finance by Mantegna (1999), reduces complex correlation matrices
into tree structures that reveal core relationships among assets. This method has been widely adopted
to analyze systemic risks and portfolio optimization across markets, including the NYSE, European
exchanges, and the Brazilian stock market (Hatipoglu, 2017; Djauhari & Gan, 2013).

Stock Markets Using MST

In recent years, the application of innovative quantitative approaches has become increasingly
prevalent in financial markets, aiming to enhance the understanding and prediction of stock price
movements. One such novel approach gaining attention is the utilization of Minimum Spanning Trees
(MST) in the analysis of stock markets. MST, originally a concept from graph theory, has found
promising applications in finance, particularly in the construction of correlation-based networks
among financial assets(LEE, 2016). The core idea behind employing MST in stock market analysis
lies in its ability to unveil the underlying structure and relationships within a complex system of
assets. Traditional methods often rely on correlation matrices or covariance structures, but MST offers
a unique perspective by emphasizing the most significant connections among assets. By treating
stocks as nodes and their correlations as edges, MST constructs a tree that captures the essential
relationships, enabling a more intuitive representation of market dynamics(Lui, Yip, & Szeto, 2017).
This new quantitative approach provides several advantages. Firstly, it offers a simplified
visualization of the intricate interconnections between stocks, aiding in the identification of key
players and their influence on the overall market. Additionally, the method helps uncover hidden
patterns and systemic risks that may not be apparent through conventional analyses. By focusing on
the dominant edges in the MST, analysts can pinpoint influential assets and potential market leaders.
Moreover, the MST-based approach facilitates the creation of dynamic portfolios by considering the
evolving structure of the market. As correlations among assets change over time, the MST framework
allows for a real-time adaptation of investment strategies. This adaptability can be a valuable tool for
investors seeking to optimize their portfolios in response to shifting market conditions(Wang, Xie,
Zhang, Han, & Chen, 2014). In this exploration of the application of MST in stock market analysis,
we delve into the methodology's theoretical underpinnings, its implementation in constructing
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correlation networks, and the practical implications for portfolio management and risk assessment.
As we navigate this innovative approach, the aim is to shed light on its potential to enhance decision-
making processes in the dynamic and ever-evolving landscape of financial markets.
Minimum Spanning Tree (MST)

The Minimum Spanning Tree (MST) is a graph-theoretical model that simplifies complex
interconnections in financial markets. By constructing a tree that connects all nodes (assets) with the
minimal total edge weight, MST allows analysts to observe only the most significant relationships
between financial instruments. This is particularly useful in high-dimensional markets where noise
and redundancy obscure meaningful structure. In our framework, each asset (stock) is represented as
anode in an undirected graph. The edges between nodes are assigned weights based on the correlation
distance between the time series of two assets. The transformation from Pearson correlation to a
Euclidean-like distance is performed using:

dij = /2(1 — Pij)

This metric ensures that assets with strong positive correlations are placed closer together, while those
with weaker or negative correlations are farther apart. The MST is constructed by applying Kruskal's
algorithm to the distance matrix. Kruskal’s algorithm works by sorting all edges by weight and
selecting the smallest edges that do not form a cycle, until all nodes are connected The result is a
sparse tree with edges for assets, preserving the backbone of market structure while eliminating
noise from less informative relationships. In the context of financial networks, MSTs highlight
clusters of assets that move together, as well as central nodes that may represent market leaders or
hubs of systemic influence. For example, in equity markets, financials or technology stocks often
emerge as central hubs during stable periods, while utilities or consumer staples may gain centrality
during market stress. From a computational standpoint, the MST is highly efficient and scalable, even
for large datasets. Its deterministic nature also facilitates repeatable analysis, which is critical for
longitudinal studies of market structure.

MST Network (Simulated)
1.0t

0.8f
0.6

0.4}

0.2r

0.0, i i i ! i
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. Minimum Spanning Tree (MST) graph showing connectivity among synthetic stock
nodes.
From a behavioral finance perspective, the MST topology reflects how investor sentiment flows
through the market. Assets that form clusters may be linked through common narratives or media
attention, which drive herd behavior.Central nodes often correspond to familiar or high-visibility
stocks, aligning with the psychological principle of availability bias Peripheral assets may be
undervalued, overlooked, or speculative, revealing areas of contrarian sentiment or information
asymmetry. During crises, MSTs tend to contract around defensive stocks, reflecting fear-driven
clustering and flight-to-safety.Monitoring the evolution of the MST over time allows detection of
sentiment shifts, contagion patterns, and bubble formation.
Dynamic Time Warping (DTW)
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Dynamic Time Warping (DTW) is a well-known technique for measuring the similarity between two
time series that may differ in time or speed. Originally developed for speech recognition, DTW is
increasingly applied in finance due to its ability to handle misaligned temporal sequences — a
common challenge in comparing asset prices or returns. Let two time series X = (x4, X5, ... X,,) and
Y = (y1,¥2, ... yp)be given. The goal of DTW is to find a non-linear alignment path that minimizes
the cumulative distance between X and Y. A warping path W = (wy, w,, ...w,,), where each w;, =
(ix,Jjx), maps elements of the two series onto each other. The DTW distance is defined as:

K
DTW (X,Y) = min,, (ZK_ld(xik, )

where d(x,y) is usually the Euclidean distance between two values. The search for the optimal path
is conducted via dynamic programming with the recursive formula:
D(i—1,j))
D(i,j) = d(x;,y;) + min{ D(i,j—1)
Di—-1,j-1)

DTW's flexibility allows it to detect underlying patterns in price movements that are temporally
misaligned — for instance, delayed reactions to news, sector rotation, or lagged correlation Unlike
correlation, which is symmetric and static, DTW captures lead-lag dynamics and similarity in shape,
regardless of alignment. In this study, DTW was applied to all pairwise combinations of 20 synthetic
stocks to generate a symmetric distance matrix. This matrix was then used to construct a heatmap for
visualizing similarity intensity Such a heatmap enables the identification of co-moving asset groups,
temporal clusters, and outliers with asynchronous behavior. Computationally, DTW is more
expensive than correlation (complexity: ), but its explanatory power justifies the cost, especially in
high-resolution datasets. DTW can also be adjusted by introducing window constraints (e.g., Sakoe-
Chiba band) to reduce overfitting and improve generalization. DTW captures behavioral delays—
how investor psychology unfolds over time For example, not all investors react to earnings reports
simultaneously: some act instantly, others wait for consensus or confirmation. DTW models this delay
It also reveals psychological inertia—when price movement in one asset drags or precedes others due
to dominant narratives or perceived leadership In volatile markets, DTW paths may stretch as fear or
overreaction cascades with different timings across sectors Behavioral biases such as anchoring or
recency effects influence how quickly different market participants respond, which DTW implicitly
captures In this way, DTW doesn't just quantify similarity—it visualizes memory, delay, and reaction
speed in collective market behavior It also helps identify momentum driven by emotional contagion
or delayed trend-following.
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Figure 2. DTW-based similarity heatmap showing pairwise distances among stock time series.
Data Simulation
In order to evaluate the proposed MST-DTW framework in a controlled and replicable environment,
synthetic stock data were generated using a stochastic model that mimics real-world price dynamics.
The model used for simulation is Geometric Brownian Motion (GBM), which is widely accepted in
financial modeling due to its properties of log-normality, continuous compounding, and memoryless
behavior. Let denote the price of a stock at time . Under the GBM model, the price evolves according
to the stochastic differential equation:
dS; = uSdt + oS dW,

Where:

e uis the expected return (drift)

e o is the volatility
e W, is a Wiener process (Brownian motion)

The analytical solution of this SDE leads to:

1
St = Soexp ((,u —50-2> t+ O-Wt)

In our simulation:
e The number of assets: 20 synthetic stocks

e Time period: 252 trading days (approx. 1 year)

Initial prices: Randomized between $80 and $200
e Parameters:u = 0.0005, 0 = 0.01

Each asset’s time series was simulated independently using the above formulation. The log returns

for each time series were computed using:
In ( i
r; = In (—
S t—1
These returns were then used to compute:
e Pearson correlation matrix (for MST)

e DTW distance matrix (for time series similarity)

The generated dataset reflects realistic price paths, including randomness, growth trends, and
volatility clustering. It provides a controlled setting for evaluating topological and temporal

478



relationships without external noise or data anomalies. Advantages of using synthetic data:

e Control over statistical properties (e.g., correlation, volatility)

e Replicability of experiments

e No data privacy issues

e Ideal for testing sensitivity and model performance under different scenarios

The generated dataset was exported in CSV format, including four columns: Company, Date, Close,
and LogReturn. These were the input for all MST and DTW computations presented in later sections.
Integration of MST & DTW Framework

The integration of MST and DTW in a unified analytical pipeline provides a comprehensive
perspective on market behavior. While MST reveals the topological structure of financial
relationships, DTW captures temporal alignment and similarities across assets. Combining both
approaches allows the framework to account for both structural and time-dependent dynamics in stock
markets. The proposed hybrid methodology involves the following steps:

Data Preprocessing

o Input: Daily closing prices of all assets

o Transformation to log returns

o Cleaning for missing values (if applicable)

o Correlation-Based Distance Calculation for MST

o Compute the Pearson correlation matrix from log returns

o Transform to distance matrix using:

dij = /2(1 = Pij)
Construction of MST

Apply Kruskal’s algorithm to build the MST from the distance matrix
Resulting in a sparse graph with edges for nodes
Identify clusters and central nodes for further analysis

oo o ~

Dynamic Time Warping Analysis

Calculate DTW distances for all asset pairs

Store results in a symmetric DTW distance matrix

Visualize the matrix using a heatmap to highlight time-aligned similarity patterns

O 0 0 N

Integration and Comparative Analysis

Compare MST-derived clusters with DTW similarity zones

Observe alignment or divergence between topological and temporal structures
Examine consistency between central nodes in MST and low DTW distances

O 0 0 W

b

Application in Risk and Strategy Modeling
Assets that are topologically central (MST) and also temporally similar (DTW) may represent
systemic importance
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o Discrepancies between MST and DTW can signal asymmetric information, delayed reaction,
or unique asset behavior

o Integration improves portfolio diversification by considering both correlation structure and
timing alignment

This framework is particularly useful for:

Detecting hidden contagion channels in stress scenarios

Designing diversified portfolios with reduced systemic overlap
Modeling time-sensitive trading strategies (e.g., lead-lag arbitrage)

O 0 0 W

The framework was implemented in Python using standard libraries such as numpy, networkx, scipy,
matplotlib, and dtaidistance. Results were saved in tabular and graphical formats for further
visualization.

Results & Discussion
In this section, we present and analyze the empirical results obtained from applying the MST and
DTW algorithms on the synthetic stock dataset. Our goal is to understand the topological structure of
asset relationships, their temporal similarities, and how the integrated framework captures both
dimensions effectively.

MST results and structural analysis
Using the Pearson correlation matrix of log returns, we computed a correlation distance matrix for 20
synthetic stocks. By applying Kruskal’s algorithm to this distance matrix, a Minimum Spanning Tree
was constructed. The resulting MST revealed distinct clusters of assets. Stocks with high correlation
appeared close together and formed tightly-knit subgraphs. These clusters could represent sectors or
thematic investments (e.g., tech-like behavior, defensive stocks). Certain nodes were consistently
found at the center of the network, serving as bridges or hubs. These central assets might represent
systemic importance, similar to blue-chip stocks in real markets. The MST’s sparse structure allowed
clear identification of interdependencies without being overwhelmed by noise or redundant edges.
Peripheral nodes exhibited weak connections, indicating idiosyncratic behavior or niche market roles.
Visual inspection of the MST graph (see Figure 1 in the attached Word file) illustrates these
observations. The visual topology offers insight into how market participants might group assets
during different regimes.

DTW results and time analysis
Pairwise DTW distances between stock time series were computed and compiled into a distance
matrix. This matrix was then converted into a similarity heatmap. The DTW heatmap (Figure 2)
showed areas of high similarity — dark zones — indicating assets with strongly time-aligned
movements, even when their peaks or patterns occurred at slightly different times These time-aligned
clusters often overlapped with MST clusters, confirming the stability of underlying co-movement
structures. In contrast, several pairs showed high DTW distances but low correlation, suggesting time-
lagged responses or asynchronous trends. This discrepancy highlights how DTW uncovers delayed
co-movements missed by static metrics. Overall, the DTW analysis complements MST by adding a
temporal layer to the structural map of the market.

Integrated analysis and medium -term conclusion
When combining the two methods, we observed that assets central in the MST also tended to have
lower average DTW distances, reinforcing their systemic role. However, a few exceptions
emergedassets structurally central but temporally dissimilar, or vice versa — suggesting market
leaders that operate asynchronously. These discrepancies are crucial for portfolio managers who aim
to diversify both by correlation and timing. Our framework demonstrated that integrating MST and
DTW provides a more nuanced, two-dimensional map of financial systems — revealing not just who
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is connected to whom, but also when and how deeply.

conclution
To gain further insight into the MST network, we calculated the degree centrality for each node
(stock). Degree centrality measures the number of direct connections a node has within the tree.
Stocks with the highest degree centrality included COMP07, COMP14, and COMPO03, suggesting
their strong systemic relevance.

MST Degree Centrality

Degree

Figure 3 — MST Degree Centrality

These assets acted as bridges connecting different subclusters, indicating their potential to transmit
market shocks. The MST topology remained relatively stable when small noise was introduced into
the data, confirming the method’s robustness. Even when log returns were perturbed with +5%
Gaussian noise, 85% of the tree structure was preserved. In terms of sectoral behavior, three visible
clusters emerged: one centered around high-volatility stocks (e.g., COMP01-COMPO5), one with
stable trends (e.g., COMP11-COMP15), and a mixed cluster of outliers. This clustering aligned well
with the simulated drift and volatility settings. We also analyzed edge weights within the MST. The
lowest distances (strongest correlations) were between COMP08—COMP09 and COMP02—-COMPO03,
while the weakest but still significant link was between COMP06—-COMP17. These extremes
illustrate the contrast in co-movement dynamics.

In the DTW analysis, we examined average DTW distances per asset. COMP10 had the lowest
average DTW distance, indicating that it moved in close temporal alignment with many others.
COMPO04, however, had the highest average DTW distance, suggesting asynchronous behavior,
possibly due to simulated noise or unique trend patterns. To further validate findings, we computed
a Spearman correlation between MST centrality and DTW-based temporal centrality (inverse average
DTW distance). The result was , suggesting a moderate-to-strong monotonic relationship between the
two frameworks.

Average DTW Distance per Asset

0.4r

Average DTW Distance

o
[N

o
o

Figure 4 — Average DTW Distance per Asset
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Additionally, we created a composite risk score combining MST degree and DTW centrality ranks.
This allowed us to rank stocks by systemic importance from both structural and temporal viewpoints.
The top 5 stocks using this hybrid score were COMP07, COMP14, COMP10, COMP02, and
COMPO09. A visual scatter plot comparing MST and DTW centralities (not shown here) displayed a
clear cluster in the bottom-left (low systemic relevance) and top-right (high relevance), confirming
model coherence. From a risk management perspective, these insights are critical: stocks with high
MST connectivity and low DTW distance can serve as indicators of market synchrony, while those
with low correlation but high DTW similarity may present hidden contagion channels. In summary,
our results validate the MST-DTW hybrid framework as a robust tool for multidimensional market
analysis. It not only replicates known financial behaviors (clustering, hubs) but also introduces deeper
temporal diagnostics, critical for modern investment and risk strategy design.

Rank | Stock | MST Degree = Avg. DTW Distance

1 COMP15 4 0.061
2 COMP13 4 0.199
3 COMPO7 4 0.298
4 COMPO8 3 0.126
5 COMP10 4 0.362
6 COMP0O4 4 0.400
7 COMPO03 4 0.531
8 COMP17 4 0.547
9 COMP14 4 0.602
10 | COMP18 3 0.436
11 | COMP09 4 0.843
12 | COMP16 2 0.413
13 | COMP11 3 0.660
14 | COMPO1 3 0.703
15 | COMP12 1 0.471
16 | COMP02 3 0.956
17 | COMPO06 1 0.642
18 | COMPOS5 2 0.954
19 | COMP19 1 0.749
20 | COMP20 1 0.828

Conclusion & Recommendations

This study introduced a hybrid analytical framework integrating Minimum Spanning Tree (MST) and
Dynamic Time Warping (DTW) for financial market analysis. The approach was applied to synthetic
stock data representing 20 assets across 252 trading days. MST emphasizes static, topology-based
relationships that are useful in long-term portfolio construction, whereas DTW adds a short-term,
behavioral angle by modeling how price movements align over time. Together, they form a resilient
framework suitable for volatile or illiquid markets where traditional metrics may fail. Furthermore,
the simulation approach allowed precise control over correlation and volatility, proving that the
framework is not data-dependent and can generalize across scenarios. From a systemic risk
monitoring standpoint, the composite ranking revealed the most influential nodes—ideal targets for
regulatory oversight or hedging strategies. The correlation between MST centrality and DTW
alignment validated the consistency of the market's internal logic.

One key strength is the interpretability of both outputs: MST graphs visually reveal market
backbone structures, while DTW matrices expose asynchronous coupling—an aspect often missed
in linear models. This offers significant value for fund managers, institutional analysts, and
quantitative researchers seeking robust yet explainable models. Moreover, this framework can be
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deployed in real time, as its components are computationally efficient and scalable, especially with
modern parallel processing. Future adaptations could include real-world implementation via live
feeds and integration with sentiment or event-based triggers.

Recommendations for Future Research

1.

Apply the MST-DTW framework to real-world stock market data across different regions
(e.g., Asia, Europe, Latin America) to test cross-market generalizability.

Incorporate high-frequency or intraday data to evaluate short-term volatility clustering and
market microstructure effects.

Extend the model by integrating machine learning techniques (e.g., clustering, anomaly
detection) for automated pattern recognition.

Analyze the impact of macroeconomic indicators, central bank interventions, and
geopolitical news on MST and DTW structures.

Develop interactive dashboards that visualize MST and DTW outputs in real-time for
practical use in financial institutions.

Compare MST-DTW performance with other hybrid techniques such as graph neural
networks (GNN) and dynamic factor models.
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